
ICFP Programming Contest

2009

Problem Specification

University of Kansas

June 26, 2009

Version Date Description
1.0 June 26, 2009 13:00:16 CDT Initial Release
1.1 June 26, 2009 15:00:00 CDT Clarified behavior of status regiser.
1.2 June 26, 2009 16:15:00 CDT Defined the completion criteria

for Hohmann problem.
1.3 June 26, 2009 16:30:00 Clarified that input/output ports are

disjoint in Input/Output semantics.
1.4 June 26, 2009 17:00:00 Emphasized need to configure binaries

before execution

1 Introduction

At 13:00:16, on June 29th, 1995, the shuttle docked with the Mir for the first
time. In order to prepare for future international missions, you are to help
program a satellite to clean up the skies of debris. There are three training
missions, then Operation Clear Skies. Good luck!

1.1 Contest structure

Contestants will implement the virtual machine described in section 2. The con-
testants will be supplied a series of binaries, each of which simulates a particular
satellite maneuver task, as described in section 6. These binaries represent a
sequence of problems in increasing difficulty, where the user will be required to
program a collection of satellites to perform a specific task. The motion of the
satellites is dictated by the equations described in section 4.

The contestants control the simulation using actuators, reacting to the state
of the simulation as exposed through sensors. Sensors and actuators interact
with the supplied problem binary through a port-mapped I/O interface.

Contestants are responsible for using the sensor data provided by the sim-
ulator, and producing inputs to the actuators to control the behaviors of the

1

various bodies. Contestant are free to use whatever language desired to develop
this logic as long as it interacts with the virtual machine through the exposed
input and output ports. Each solution for a given problem will be submitted as
a trace of the solution’s actuator inputs. A complete description of the solution
submission procedure is described in section 3.

2 Orbit Virtual Machine Specification

The contest consists of a series of tasks involving maneuvering satellites around
earth. A simulator for each problem has been compiled to a binary that can
be executed on a simple virtual machine, called the Orbit virtual machine. The
contestants are responsible for implementing the Orbit VM, according to the
ISA specification found in this section. Executables are encoded in a binary
format that the contestants must decode. Moreover, solutions to the problems
must be submitted as execution traces, also encoded in a binary format. Both
the executable format and the solution submission format are described below.

The execution model for the contest integrates the Orbit virtual machine
with a controller program that interacts with the VM through a port-mapped
interface. Typically, the controller will write to the VM’s input ports, then start
the VM execution. The VM will execute instructions, starting at address 0x0
and continuing on to the last address. After the machine has executed the entire
address space, which corresponds to one simulation time step, the controller
may then read the VM’s output ports, generate new input port values, and
then repeat the process.

2.1 Orbit Virtual Machine Specification

The Orbit virtual machine contains a data memory of 64-bit double-precision
floating point values and a disjoint instruction memory consisting of 32-bit in-
structions. Both the data and the instruction memory are indexed by 14-bit
addresses. Doubles are represented as 64-bit IEEE 754 double-precision float- Version 1.1:

Fixed incor-
rect standard
number.

ing point numbers (1 sign bit, 11 exponent bits, 52 significant bits).
The address of the current instruction is stored in a 14-bit program counter

register. This register is incremented after the execution of each instruction.
The Orbit virtual machine contains no instructions for manipulating the pro-
gram counter register.

The virtual machine contains a special 1-bit status register. This register is
written by a compare-to-zero instruction, and read by a control-join instruction.
This register is initially false when the binary is loaded, and is preserved across
instruction address wrap-around. Version 1.1:

Clarified ini-
tial value of
status register.

The machine interacts with peripherals through a port-mapped I/O inter-
face. The machine contains a 14-bit address space of doubles for input ports
along with a disjoint 14-bit address space of doubles for output ports. Values
are read from input ports using an Input instruction, and written to output
ports with a Output instruction.

2

Instruction OPCODE Semantics Note
Add r1 r2 0x1 rd ← mem[r1] + mem[r2]
Sub r1 r2 0x2 rd ← mem[r1] - mem[r2]
Mult r1 r2 0x3 rd ← mem[r1] * mem[r2]
Div r1 r2 0x4 if mem[r2] = 0.0

then rd ← 0.0
else rd ← mem[r1] / mem[r2]

Output r1 r2 0x5 outport[r1] ← mem[r2]
Phi r1 r2 0x6 if status = ’1’

then rd ←mem[r1]
else rd ←mem[r2]

Table 1: D-Type Instructions

Instructions are segmented into two categories: D-type instructions require
two operands, and S-type instructions require one operand. D-type instructions
have the form Op r1 r2, where r1 and r2 are data memory addresses. Similarly,
S-type instructions have the form Op r1, where r1 is a data memory address. In
general, the execution of an instruction at address idest will read operand values
at the addresses indicated from the data memory, execute the operator on those
values, and then store the result in the data memory address rdest corresponding
to the instruction memory address idest. Consequently, the destination address
is omitted in the instruction encoding, as it is implied by the address of the
instruction1.

2.2 D-Type Instructions

The VM’s D-Type instructions are two-argument instructions. Each instruction
has an implicit destination address; this address is the same as the address of
the instruction. The instruction is encoded as a 4-bit op-code and two 14-bit
source registers. The op-code occupies bits 31-28, address r1 occupies bits 27-14,
and address r2 occupies bits 13-0, as shown in the following table. The op-code
encoding and semantics of each instruction is shown in table 1.

31 28 27 14 13 0
OP r1 r2

2.3 S-Type Instructions

As with the D-type instructions, each S-type instruction has an implicit des-
tination address which corresponds to the instruction address. Each S-type
instruction, however, has a single address argument. In the encoding of an S-
type instruction, bits 31-28 contain the value 0x0. Bits 27-24 contain the S-type

1There are two exceptions to this destination address mode: the compare-to-zero and the
output instructions. Both are described below.

3

Instruction OPCODE Semantics Note
Noop 0x0 rd ← mem[rd]
Cmpz imm r1 0x1 status← mem[r1] op 0.0 a

Sqrt r1 0x2 rd ← |
√

mem[r1]|
Copy r1 0x3 rd ← mem[r1]
Input r1 0x4 rd ← inport[r1]

aThe operator is indicated by the immediate mode argument.

Table 2: S-Type Instructions

instruction op-code. Bits 23-14 are reserved for instruction-specific immediate
parameters. Finally, bits 13-0 contain the source operand address. The diagram
below represents this encoding graphically. Op-code encodings and instruction
semantics are defined in table 2.

31 28 27 24 23 14 13 0
0x0 OP IMM r1

The Cmpz (compare to zero) instruction uses a 4-bit immediate operand,
occupying bits 23-20 of the instruction, to indicate the comparison to be per-
formed. The result of this operator is stored in the boolean status register. Each
operator compares the input operand with zero. Table 3 shows the comparison
op-codes along with the associated encoding and operators.

OPCODE Encoding Operation
LTZ 0x0 <
LEZ 0x1 ≤
EQZ 0x2 =
GEZ 0x3 ≥
GTZ 0x4 >

Table 3: Comparison Operations

2.4 Orbit Executable Format

The Orbit executable format stores the values for the instruction memory and
the initial contents of the data memory. These values are stored in the exe-
cutable format in sequential order, starting with the values for address zero.
Instructions are stored as 32-bit words, encoded according to the format de-
scribed in sections 2.2 and 2.3. Data memory values are stored as 64-bit double
precision floating point values. Both instruction and data values are stored in
the binary format in little-endian byte order.

The pairing of a 32-bit instruction and a 64-bit data value constitutes a 96-bit
frame in the executable file. The order of the instruction and data values varies,

4

depending on the frame address. For frames corresponding to even addresses,
the first eight bytes of the frame contain to the double data value, while the next
four bytes constitute the instruction value. Conversely, for frames corresponding
to odd addresses, the first four bytes contain the instruction value and then next
eight bytes contain the data value.

An Orbit binary may not contain values for the entire address range. If
an executable is smaller than the complete address range for the Orbit VM,
the loader should assume that addresses for the instruction and data memories
beyond those supplied by the binary contain the Noop instruction and the value
0.0, respectively.

3 Solution Submission

The contest consists of a sequence of problems, each of which consists of a
collection of scenarios. Associated with each problem is a binary image, in
the format described in section 2.4. Contestants will write a program that will
produce actuator inputs on the virtual machine’s input ports to control the body
represented in the binary to accomplish the defined task. Upon completing the
task, the binary will present a score for that scenario which takes into account
the scoring criteria as defined by the problem description. The contestants will
upload a scenario solution binary that represents the series of actuator inputs
used to arrive at their solution.

This scenario solution binary contains the following information:

• The team’s identification number, available from the contest website.

• The scenario identification number, also available from the contest website.

• The sequence of actuator inputs used to solve the task.

This data is encoded in the scenario solution binary format as described
below. The file format consists of a header, which includes a file magic number,
the team identifier, and the scenario identifier. This is followed by a series of
simulation frames. Table 4 shows this format graphically.

Bytes 0-3 of the file header should contain the value 0xCAFEBABE. Bytes
4-7 contain the team identification number. Bytes 8-11 contain the scenario
number. Each of these value are 32-bit unsigned integers. All values, regardless
of bit size, are stored in little-endian byte order.

The file header is followed by a sequence of simulation frames. These frames
are used to identify the actuator inputs for a given time step, and must appear
in strictly ascending time step order. To minimize the space needed to represent
these values, the simulation frame should only contain values for ports which
differ from the previous time step. If an input port’s value is unchanged by the
contestant’s control program, then that port’s value should be excluded from
the simulation frame.

The simulation frame contains a frame header followed by a collection of port
value mappings. The frame header contains the time step of the frame, followed

5

byte value
0 0xCAFEBABE
4 TeamID
8 ScenarioID

12 TimeStep0

16 Count (e.g. k)
20 Addri

24 Valuei

28
...

20+k*12 TimeStep1

24+k*12 Count
...

Table 4: Submission File Format

by a count of port value mappings for that frame. Both the time step and count
are represented as 32-bit unsigned integers, stored in little-endian byte order.
Following the frame header are the collection of port value mappings.

A port value mapping consists of an input port address followed by a cor-
responding value. The port address is stored as a 32-bit unsigned integer in
little-endian byte order. Since the 32-bit address representation is larger than
the 14-bits of the virtual machine’s port address space, the port address is zero-
padded, such that bits 31-14 in the port value mapping address is all zeros,
with bits 13-0 containing the actual port address.The port address is followed
by the assigned value, stored as a 64-bit double precision floating point value,
in little-endian byte order.

The final frame of a solution submission should contain a header with the
time step immediately after the step in which the simulation binary reported a
score. A valid solution must have a final time step less than 3 Million seconds.
Moreover, the final frame should contain no port mappings, but simply indicate
it is the final frame by setting the count for that frame to zero.

4 Physics

Each body has a position in space. The position s of a body at a time t is
denoted st. A body also has a velocity vt, and an acceleration at. The body’s
position at the next time step t + 1, denoted st+1, is a function of the current
position, the velocity, the acceleration, and the amount of time between steps,
∆t. The physics equations use SI units: Kg for mass, meters for distance,
Newtons for force, m/s for velocity, and m/s2 for acceleration.

6

st+1 = st + vt ·∆t +
1
2
at ·∆t2 (1)

When a force is applied to a body, it will undergo an acceleration, which is
a function of the mass and the force, as related by the equation.

F = m · a (2)

Gravity produces an attractive force, Fg between two bodies. This force is a
function of the masses of the two bodies, the distance between the two, r, and
a universal gravitational constant G.

Fg =
Gm1m2

r2
(3)

G = 6.67428 · 10−11 (4)

5 Simulation Properties

The simulation binaries implement a discrete approximation of the physics equa-
tions defined in section 4. This approximation is a result of quantization in both
space and time. Moreover, the simulation contains a collection of simplifying
assumptions.

1. The mass of each satellite is negligible, and the resulting force upon the
earth is zero. The earth does exert a gravitational force on the satellite.

2. The gravitational force between two satellites is negligible, and is disre-
garded.

3. The distance between two bodies is calculated from the centers of the
bodies.

4. The simulation proceeds with a constant ∆t of 1 second.

5. The mass of the earth, me, is 6.0 · 1024 Kg.

6. The radius of the earth is 6.357 ·106 meters. A satellite that passes within
this radius is assumed to collide with the earth.

7. Position, velocity, and acceleration are restricted to two dimensions.

8. Velocity and acceleration are constant for the duration of the time step.

7

The distance between two bodies with positions s1 and s2 is calculated by
decomposing those positions into x and y coordinates, denoted sx and sy, as
defined:

r =
√

(sx1 − sx2)2 + (sy1 − sy2)2 (5)

The velocity of a body at time t+1 is a function of the body’s velocity at time
t, any acceleration from thrusting, and acceleration from gravity. Gravitational
acceleration gt and gt+1 are defined by equation 3. The acceleration due to
thruster firing results in a change in velocity, ∆V , over the duration of the time
step ∆t.

gt =
Gme

r2
(6)

st+1 = st + (vt ·∆t) +
1
2
· (gt + ∆V) ·∆t2 (7)

vt+1 = vt + (∆V +
gt + gt+1

2
) ·∆t (8)

6 Problems

The contest consists of four problems. Each problem requires the contestants
to write a program that will control a satellite to accomplish a given task. For
example, the goal of the first problem is to move a satellite from one circular
orbit into a different circular orbit. Furthermore, for each problem, there are a
series of scenarios. Each scenario represents an instance of the problem with the
satellites in a different starting configuration. Each problem has an associated
problem binary, available for download on the contest website. The contestants
select a specific scenario for a given problem by assigning a configuration value
to the virtual machine input port at address 0x3E80. It is essential to configure
the binary by assigning an appropriate scenario number to this configuration
port in the first cycle. Version 1.4:

Emphasized
need to con-
figure binaries
before execu-
tion

Table 5 shows the scenario configuration numbers for the various problems.

Problem Configuration Range
Hohmann 1001-1004
Meet & Greet 2001-2004
Eccentric 3001-3004
Clear Skies 4001-4004

Table 5: Scenario Configuration Numbers

For all problems, the contestants control the satellite by providing input
to a thruster actuator. The control program can observe and react to the
environment using a variety of sensors. The actuator inputs and sensor outputs

8

are mapped to specific virtual machine input and output ports, respectively.
The port mapping is defined in the specification for each problem.

The actuator input port mappings for all four problems are shown in ta-
ble 6. The configuration port is described above. The ∆V input represents an
actuator input which will result in a change in velocity over the next time step
of the simulation, expressed in meters/sec. This value is a vector, and the ports
correspond to the x and y components of that vector.

Input port address Actuator
0x2 ∆Vx

0x3 ∆Vy

0x3E80 Configuration

Table 6: Actuator input ports

6.1 Hohmann

The Hohmann problem requires the controller to transfer the satellite, initially
in a circular orbit around earth, into a different circular orbit. To successfully
complete this task, the satellite must remain in within 1km of the target orbit
radius for 900 seconds.

The simulator exposes environment sensor data, as shown in table 7. The
Score sensor is the score calculated (according to the formulae in section 7) by
the simulation binary. This score will be 0.0 initially, and will only change when
the task has been completed successfully. The Fuel Remaining sensor represents
a fuel gauge, measured in units of |∆V |. At time step 0, the output of this sensor
represents a full fuel tank. This output will decrease as the thrust actuator is
employed by the controller program.

The position of the controlled satellite relative to earth is decomposed into
vector components sx and sy. The radius of the target orbit is exposed by the
final sensor.

Output port address Sensor
0x0 Score
0x1 Fuel Remaining
0x2 sx relative to earth
0x3 sy relative to earth
0x4 Target orbit radius

Table 7: Hohmann Problem sensor output ports

6.2 Meet and Greet

In Meet and Greet, the contestant must move a satellite in a circular orbit about
earth to meet with a second satellite, also in a circular orbit. The target satellite

9

will maintain its orbit throughout the simulation. To successfully complete this
challenge, the position of the controlled satellite must remain within 1km of the
target for 900 consecutive seconds. Version 1.2:

Added com-
pletion criteria

The sensors associated with the Meet and Greet problem binary are shown
in table 8. These are the same as the Hohmann problem, with the addition of
two ports that give the vector to the target satellite from the controlled satellite.

Output port address Sensor
0x0 Score
0x1 Fuel Remaining
0x2 sx relative to earth
0x3 sy relative to earth
0x4 sx relative to target satellite
0x5 sy relative to target satellite

Table 8: Meet and Greet sensor output ports

6.3 Eccentric Meet and Greet

This problem generalizes the Meet and Greet problem. The task is still to move
the satellite from one orbit to meet with a target satellite. However, the orbits
of both satellites can be arbitrary ellipses. As with the Meet and Greet problem,
the completion criteria requires the controlled satellite to remain within 1km
of the target for 900 consecutive seconds. The sensor outputs for this problem
are the same as for the Meet and Greet problem, as shown table 8. Again, the
actuator inputs are those shown in table 6

6.4 Operation Clear Skies

The challenge of the Operation Clear Skies problem is to control the satellite
so that it visits a collection of twelve target satellites, each of which are in
an elliptical orbit around earth. The binary for Operation Clear Skies will be
released 24 hours after the start of the contest, following the conclusion of the
lightning round.

To successfully visit a target satellite, the controlled satellite must pass
within 1km of the satellite. There is no requirement that the satellite main-
tain a position within this radius for any longer than one time step. Note that
it may be possible to cross paths with the target satellite without being within
the maximum radius at a given time step. This will not count as successfully
visiting the satellite.

Because the Operation Clear Skies problem may require a large number
of orbit transfer maneuvers, there will be a special refueling station in orbit.
Whenever the controlled satellite passes within the visiting radius of the refuel-
ing station, the amount of fuel required to fill the controlled satellite’s tank will
be transferred from the station to the controlled satellite.

10

The sensor output port mappings for the Operation Clear Skies problem are
shown in table 9. The sensors for this problem include a relative position vector
between the controlled satellite and each target satellite, as well as the fueling
station. There are twelve target satellites total, labeled target0 . . . target11, in
addition to the fueling station. In the sensor port mapping, each target satellite
has a sensor output which indicates whether that satellite has been successfully
visited. This output will be 1.0 if the satellite has been visited, 0.0 otherwise.

Output port address Sensor
0x0 Score
0x1 Fuel Remaining
0x2 sx relative to earth
0x3 sy relative to earth
0x4 sx relative to fueling station
0x5 sy relative to fueling station
0x6 Fuel remaining on fuel station
0x7 sx relative to target0
0x8 sy relative to target0
0x9 target0 successfully collected
0xA sx relative to target1
0xB sy relative to target1
0xC target1 successfully collected

...
3 · k + 0x7 sx relative to targetk

3 · k + 0x8 sy relative to targetk

3 · k + 0x9 targetk successfully collected

Table 9: Operation Clear Skies sensor output ports

7 Scoring Criteria

The scoring for the contest will be on a total points basis. The scoring formula
for each problem is described below. For each problem scenario successfully com-
pleted, the scoring formula will be used to calculate the score for that scenario.
The scenario scores will be summed to form a problem score. The problem
scores will, in turn, be summed to calculate a contest score. In the case of a tie,
the team with the earliest submission for all scenarios will win the tiebreaker.

In the event that the controlled satellite collides with the earth or the con-
troller produces an actuator input that is consumes more than the amount of
fuel remaining in the satellite, the score for that scenario will be −1.0.

For the Hohmann, Meet and Greet, and Eccentric Meet and Greet, the score
for a scenario will be calculated using the following formula. The unscaled score
is the sum of the points for completing the task, the ratio of the fuel remaining
over the fuel at the start of the scenario, and a time bonus. The fuel bonus is

11

45 points times the percentage of fuel remaining. The time bonus is 30 points,
minus a time penalty that is calculated as the base-two logarithm of the number
of seconds taken to complete the task divided by 1000. This score is multiplied
by scaling factor. The factor is 1.0 for the Hohmann problem, 2.0 for the Meet
and Greet problem, and 4.0 for the Eccentric Meet and Greet problem.

unscaled = 25 + 45 · (fremaining/fstart) + (30− lg
t

1000
) (9)

Scoring for Operation Clear Skies utilizes a separate formula, shown below.
For each target satellite, a countdown timer is initialized to 2 · 106. This count-
down timer for each satellite is decremented by one every time step, until that
satellite has been visited, at which point the countdown for the satellite ends,
and a score ti is recorded for that satellite. After 2 · 106 seconds, the scores for
all satellites summed and divided by 24 · 106. This factor is multiplied by 75 to
get the total time component of the score. Additionally, the score incorporates
a fuel factor, which is calculated similarly to that of the first three problems,
as fremaining/fstart. However, this ratio is of the total fuel, both stored on the
satellite as well as that in the fueling station. The fueling factor is multiplied
by 25. Finally, the sum of the time and fueling factors are multiplied by 8.0.

ti = 2 · 106 − timei (10)

scoret =
∑11

i=0 ti
24 · 106

(11)

unscaled = 75 · scoret + 25 · (fremaining/fstart) (12)
score = 8.0 · unscaled (13)

8 Evaluation Procedure

During the 72-hour duration of the competition, contestants will be able to up-
load problem solutions. For each problem, the contestant will upload a trace
for each scenario associated with the problem. Moreover, the contestants will
upload an archive which contains the complete source of the all problem solu-
tions. Contestants can re-upload solutions. For the overall competition, the
organizers will base the team score solely on most recently uploaded
solution.

For the lightning round competition, the organizers will base scoring on the
latest solutions within the 24-hour lightning round window. Uploads after the
24-hour time limit will not invalidate lightning round solutions, but will not
be considered for the lightning round. Thus, a team can submit a solution
for the lightning round, and then submit an improved solution for the overall
competition.

Immediately upon uploading, the solution will be marked unverified. The
organizers will then execute the scenario binary on a reference virtual machine,

12

with the supplied trace, to verify that the submitted solution’s completes the
task and to compute the score. The solution will then be marked verified.
Throughout the competition, the organizers may post preliminary scores based
on verified solutions. However, these scores are not to be treated as final results
until the solutions have been validated, as described below.

Solutions for the top ten teams will be validated, after the contest concludes,
by generating a new collection of scenarios for each problem. The team’s sub-
mitted source code for the problem solutions will be be executed on these new
scenarios to verify that solutions submitted are general solutions to the problem
and that those solutions utilize only the sensor output exposed as described
in the problem description. The rankings of the contestants in the validation
round will be used to determine the final contest placement. To be eligible for
consideration in the validation round, the contestants must agree to assist the
contest organizers in compiling and executing the submitted problem solutions.

Appendix: Hohmann Transfer

The Hohmann transfer is a fuel efficient way to move between two circular orbits.
The Hohmann transfer orbit is a elliptical orbit in which the semi-major axis
(axis of largest diameter) is equal to the diameter of the larger circular orbit.
In Figure 1, this is orbit 3. The transfer requires two engine impulses: one to
enter the elliptical orbit and one to enter the target orbit.

Figure 1 illustrates a Hohmann transfer to a larger orbit. The solid lines
represent the path a spacecraft would take from the inner orbit (1) to the outer
orbit (3). ∆v corresponds to the change in velocity as a result of the first engine
impulse. This impulse must accelerate the ship in the direction it is currently
traveling (i.e. tangent to the orbit). The impulse will place the ship into an
elliptical orbit (2). The ship will travel half of the elliptical orbit at which point
it will arrive at radius R′ and require another engine impulse to accelerate it
into the larger circular orbit (3).

Note that in the example above, the Hohmann transfer is used to move to a
higher altitude orbit. However, the Hohmann transfer can be used to move to
a lower altitude orbit as well. In that case, the thrust applied at ∆v and ∆v′

will be negative (i.e. in the opposite direction the ship is traveling) to slow the
ship rather than accelerate it.

The mathematical equations for ∆v and ∆v′ are beyond the scope of this
document but are discussed in the Wikipedia article here.

13

http://en.wikipedia.org/wiki/Hohmann_transfer_orbit

Figure 1: Hohmann Transfer Orbit

14

	Introduction
	Contest structure

	Orbit Virtual Machine Specification
	Orbit Virtual Machine Specification
	D-Type Instructions
	S-Type Instructions
	Orbit Executable Format

	Solution Submission
	Physics
	Simulation Properties
	Problems
	Hohmann
	Meet and Greet
	Eccentric Meet and Greet
	Operation Clear Skies

	Scoring Criteria
	Evaluation Procedure

