Browse Source

first eval commit

master
Stefan Bühler 9 years ago
commit
bb6957abc0
1 changed files with 220 additions and 0 deletions
  1. +220
    -0
      Eval.hs

+ 220
- 0
Eval.hs View File

@@ -0,0 +1,220 @@

module Eval where

import Control.Monad
import Control.Monad.IO.Class
import qualified Data.Array.IO as A
import System.IO.Unsafe

type Field = (Value, Int)
type Fields = A.IOArray Int Field
data Player = Player { fields :: Fields } deriving (Show, Eq)
data Game = Game { proponent, opponent :: Player, applications :: Int, automode :: Bool, gameturn :: Integer } deriving (Show, Eq)

data Turn x = Turn { runTurn' :: Game -> IO (Game, Either String x) }

data Value = ValInt !Int | ValFunction String (Value -> Turn Value)
vitality :: Int -> Int
vitality x = if (x < 0) then 0 else if (x > 65535) then 65535 else x
int :: Int -> Value
int x = ValInt $ vitality x


data Card = Card_I | Card_Zero | Card_Succ | Card_Dbl | Card_Get | Card_Put | Card_S | Card_K | Card_Inc | Card_Dec | Card_Attack | Card_Help | Card_Copy | Card_Revive | Card_Zombie
data Move = MoveLeft Card Int | MoveRight Int Card

instance Monad Turn where
(Turn f) >>= g = Turn $ \game -> (f game >>=) $ \(game', r) -> case r of Right x -> (case g x of Turn g' -> g' game'); Left s -> return (game', Left s)
return x = Turn $ \game -> return (game, Right x)
fail s = Turn $ \game -> return (game, Left s)

instance MonadIO Turn where
liftIO f = Turn $ \game -> f >>= \x -> return (game, Right x)

apply :: Int -> Turn ()
apply n = Turn $ \game -> let a = n + (applications game) in let g = game { applications = a } in if a > 1000 then return (g, Left "Application limit exceeded") else return (g, Right ())

reset :: Turn ()
reset = Turn $ \game -> return (game {applications = 0}, Right ())

try :: Turn x -> (String -> Turn y) -> Turn ()
try (Turn action) catch = Turn $ \game -> (action game >>=) $ \(game', r) -> case r of Right _ -> return (game', Right ()); Left s -> case catch s of Turn catch' -> catch' game' >>= (\(game'', r) -> case r of Right _ -> return (game'', Right ()); Left s -> return (game'', Left s))

instance Show Value where
show (ValInt i) = show i
show (ValFunction name _) = name

instance Show Fields where
show f = unsafePerformIO $ do
assocs <- A.getAssocs f
return $ show $ filter (\(_, (val, vit)) -> vit /= 10000 || (show val /= "I")) assocs

take1 :: String -> (Value -> Turn Value) -> Value
take1 name f = ValFunction name $ \v -> apply 1 >> f v
take2 :: String -> (Value -> Value -> Turn Value) -> Value
take2 name f = ValFunction name $ \v -> apply 1 >> return (take1 (name ++ " (" ++ show v ++ ")") (f v))
take3 :: String -> (Value -> Value -> Value -> Turn Value) -> Value
take3 name f = ValFunction name $ \v -> apply 1 >> return (take2 (name ++ " (" ++ show v ++ ")") (f v))

getInt :: Value -> Turn Int
getInt v = case v of ValInt x -> return x; _ -> fail "Expected Integer, got Function"
getSlotNo :: Value -> Turn Int
getSlotNo = getInt >=> \slot -> if (slot >= 0 && slot <= 255) then return slot else fail ("Invalid slot index " ++ (show slot))
getFunc :: Value -> Turn (Value -> Turn Value)
getFunc v = case v of ValFunction _ x -> return x; _ -> fail "Expected Function, got Integer"
tryApply :: Value -> Value -> Turn Value
tryApply f v = case f of ValFunction _ f' -> f' v; _ -> fail "Expected Function, got Integer"

readSlot :: (Game -> Player) -> Int -> Turn (Int, Field)
readSlot player n = Turn $ \game -> A.readArray (fields $ player game) n >>= \field -> return (game, Right (n, field))
writeSlot :: (Game -> Player) -> Int -> Field -> Turn ()
writeSlot player n field = Turn $ \game -> A.writeArray (fields $ player game) n field >> return (game, Right ())
writeValue :: (Game -> Player) -> Int -> Value -> Turn ()
writeValue player n val = readSlot player n >>= \(_, (_, vit)) -> writeSlot player n (val, vit)

getSlot :: (Game -> Player) -> Value -> Turn (Int, Field)
getSlot player = getSlotNo >=> readSlot player

getAliveSlot :: (Game -> Player) -> Value -> Turn (Int, Field)
getAliveSlot player = getSlot player >=> \r@(slot, (_, vit)) -> if (vit > 0) then return r else fail ("Slot " ++ (show slot) ++ " not alive")

autoSwitch :: Turn () -> Turn () -> Turn Value
autoSwitch (Turn norm) (Turn aut) = (Turn $ \game -> if (automode game) then aut game else norm game) >> return (card Card_I)

healSlot :: (Game -> Player) -> Int -> Int -> Turn ()
healSlot player amount slot = do
(_, (val, vit)) <- readSlot player slot
when (vit > 0) (writeSlot player slot (val, vitality $ vit + amount))

pierceSlot :: (Game -> Player) -> Int -> Int -> Turn ()
pierceSlot player amount slot = do
(_, (val, vit)) <- readSlot player slot
when (vit > 0) (writeSlot player slot (val, vitality $ vit - amount))

reviveSlot :: (Game -> Player) -> Int -> Turn ()
reviveSlot player slot = do
(_, (val, vit)) <- readSlot player slot
when (vit <= 0) (writeSlot player slot (val, 1))

card :: Card -> Value
card Card_I = take1 "I" $ return
card Card_Zero = ValInt 0
card Card_Succ = take1 "Succ" $ getInt >=> return . int . (+1)
card Card_Dbl = take1 "Dbl" $ getInt >=> return . int . (*2)
card Card_Get = take1 "Get" $ getAliveSlot proponent >=> \(_, (val, _)) -> return val
card Card_Put = take1 "Put" $ const $ return $ card Card_I
card Card_S = take3 "S" $ \f g x -> do
h <- tryApply f x
y <- tryApply g x
tryApply h y
card Card_K = take2 "K" $ \x _ -> return x
card Card_Inc = take1 "Inc" $ getSlotNo >=> \slot -> autoSwitch (healSlot proponent 1 slot) (pierceSlot proponent 1 slot)
card Card_Dec = take1 "Dec" $ getSlotNo >=> \slot -> autoSwitch (pierceSlot opponent 1 (255-slot)) (healSlot opponent 1 (255-slot))
card Card_Attack = take3 "Attack" $ \i j n -> do
i <- getSlotNo i
n <- getInt n
autoSwitch (do
(_, (_, vit)) <- readSlot proponent i
when (vit < n) $ fail "Attack: not enough vitality"
pierceSlot proponent n i
j <- getSlotNo j
pierceSlot opponent ((n*9) `div` 10) (255-j)
) (do
(_, (_, vit)) <- readSlot proponent i
when (vit < n) $ fail "Attack: not enough vitality"
pierceSlot proponent n i
j <- getSlotNo j
healSlot opponent ((n*9) `div` 10) (255-j)
)
card Card_Help = take3 "Help" $ \i j n -> do
i <- getSlotNo i
n <- getInt n
autoSwitch (do
(_, (_, vit)) <- readSlot proponent i
when (vit < n) $ fail "Help: not enough vitality"
pierceSlot proponent n i
j <- getSlotNo j
healSlot proponent ((n*11) `div` 10) (255-j)
) (do
(_, (_, vit)) <- readSlot proponent i
when (vit < n) $ fail "Help: not enough vitality"
pierceSlot proponent n i
j <- getSlotNo j
pierceSlot proponent ((n*11) `div` 10) (255-j)
)
card Card_Copy = take1 "Copy" $ getSlotNo >=> readSlot opponent >=> \(_, (val, _)) -> return val
card Card_Revive = take1 "Revive" $ getSlotNo >=> reviveSlot proponent >=> const (return $ card Card_I)
card Card_Zombie = take2 "Zombie" $ \i x -> do
i <- getSlotNo i
(_, (_, vit)) <- readSlot opponent (255-i)
when (vit > 0) $ fail "Zombie: slot is still alive"
writeSlot opponent (255-i) (x, -1)
return $ card Card_I

runauto :: Turn ()
runauto = do
Turn $ \game -> return (game { automode = True }, Right ())
forM_ [0..255] $ \slot -> do
(_, (val, vit)) <- readSlot proponent slot
when (vit == -1) $ do
try (reset >> tryApply val (card Card_I)) (\s -> liftIO $ putStrLn $ "Error for zombie " ++ (show slot) ++ ": " ++ s)
writeSlot proponent slot (card Card_I, 0)
Turn $ \game -> return (game { automode = False }, Right ())

switchPlayer :: Turn ()
switchPlayer = Turn $ \game -> return (game { proponent = opponent game, opponent = proponent game, gameturn = 1 + gameturn game }, Right ())

runMove :: Move -> Turn ()
runMove m = do
(l, r, field) <- getmove m
runauto
try (reset >> tryApply l r >>= writeValue proponent field) (\s -> liftIO $ putStrLn $ "Error: " ++ s)
switchPlayer
where
getmove :: Move -> Turn (Value, Value, Int)
getmove (MoveLeft crd field) = do
(_, (f, _)) <- getAliveSlot proponent (ValInt field)
return (card crd, f, field)
getmove (MoveRight field crd) = do
(_, (f, _)) <- getAliveSlot proponent (ValInt field)
return (f, card crd, field)


initFields :: IO Fields
initFields = A.newArray (0, 255) (card Card_I, 10000)
initPlayer :: IO Player
initPlayer = initFields >>= return . Player
initGame :: IO Game
initGame = do
p0 <- initPlayer
p1 <- initPlayer
return $ Game p0 p1 0 False 0


runTurn :: Turn () -> Game -> IO Game
runTurn turn game = runTurn' turn game >>= \res -> case res of
(game', Left s) -> (putStrLn $ "Error in turn: " ++ s) >> return game
(game', Right _) -> return game
run :: [Move] -> Game -> IO Game
run moves game = foldM (flip runTurn) game $ map runMove moves

testMoves :: [Move] -> IO Game
testMoves moves = initGame >>= run moves

testMoves1 :: [Move] -> IO Game
testMoves1 moves = initGame >>= \game -> foldM (\g t -> runTurn (t >> switchPlayer) g) game $ map runMove moves
















Loading…
Cancel
Save