You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

276 lines
10 KiB

{-# OPTIONS -XTypeSynonymInstances #-}
module Eval (
Game (..),
Player (..),
Fields,
Field,
Turn (..),
Value (..),
Card (..),
MonadIO (..),
cardNames,
pCard,
Move (..),
card,
initGame,
getGame,
try,
runMove,
runTurn,
testMoves,
testMoves1
) where
import Control.Monad
import qualified Data.Array.IO as A
import System.IO
import System.IO.Unsafe
import Data.Maybe
import Text.ParserCombinators.ReadP
import Data.Char
type Field = (Value, Int)
type Fields = A.IOArray Int Field
data Player = Player { fields :: Fields } deriving (Show, Eq)
data AIState = AIState deriving (Show, Eq)
data Game = Game { proponent, opponent :: Player, applications :: Int, automode :: Bool, gameturn :: Integer, aistate :: AIState } deriving (Show, Eq)
data Turn x = Turn { runTurn' :: Game -> IO (Game, Either String x) }
data Value = ValInt !Int | ValFunction String (Value -> Turn Value)
vitality :: Int -> Int
vitality x = if (x < 0) then 0 else if (x > 65535) then 65535 else x
int :: Int -> Value
int x = ValInt $ vitality x
data Card = Card_I | Card_Zero | Card_Succ | Card_Dbl | Card_Get | Card_Put | Card_S | Card_K | Card_Inc | Card_Dec | Card_Attack | Card_Help | Card_Copy | Card_Revive | Card_Zombie deriving (Enum, Eq)
data Move = MoveLeft Card Int | MoveRight Int Card
cardNames = [(Card_I, "I"),(Card_Zero, "zero"),( Card_Succ, "succ"),( Card_Dbl, "dbl"),( Card_Get, "get"),( Card_Put, "put"),( Card_S, "S"),( Card_K, "K"),( Card_Inc, "inc"),( Card_Dec, "dec"),( Card_Attack, "attack"),( Card_Help, "help"),( Card_Copy, "copy"),( Card_Revive, "revive"),( Card_Zombie, "zombie")]
cardNamesX = map (\(a,b) -> (b,a)) cardNames
instance Monad Turn where
(Turn f) >>= g = Turn $ \game -> (f game >>=) $ \(game', r) -> case r of Right x -> (case g x of Turn g' -> g' game'); Left s -> return (game', Left s)
return x = Turn $ \game -> return (game, Right x)
fail s = Turn $ \game -> return (game, Left s)
class Monad m => MonadIO m where
liftIO :: IO x -> m x
instance MonadIO Turn where
liftIO f = Turn $ \game -> f >>= \x -> return (game, Right x)
modifyGame :: (Game -> Game) -> Turn ()
modifyGame f = Turn $ \game -> return (f game, Right ())
getGame :: Turn Game
getGame = Turn $ \game -> return (game, Right game)
switchPlayer :: Turn ()
switchPlayer = modifyGame $ \game -> game { proponent = opponent game, opponent = proponent game, gameturn = 1 + gameturn game }
apply :: Int -> Turn ()
apply n = Turn $ \game -> let a = n + (applications game) in let g = game { applications = a } in if a > 1000 then return (g, Left "Application limit exceeded") else return (g, Right ())
reset :: Turn ()
reset = modifyGame $ \game -> game {applications = 0}
try :: Turn x -> (String -> Turn y) -> Turn ()
try (Turn action) catch = Turn $ \game -> (action game >>=) $ \(game', r) -> case r of Right _ -> return (game', Right ()); Left s -> case catch s of Turn catch' -> catch' game' >>= (\(game'', r) -> case r of Right _ -> return (game'', Right ()); Left s -> return (game'', Left s))
instance Show Value where
show (ValInt i) = show i
show (ValFunction name _) = name
instance Show Fields where
show f = unsafePerformIO $ do
assocs <- A.getAssocs f
return $ show $ filter (\(_, (val, vit)) -> vit /= 10000 || (show val /= "I")) assocs
instance Show Card where
show c = fromJust $ lookup c cardNames
instance Show Move where
show (MoveLeft c pos) = (show c) ++ " " ++ (show pos)
show (MoveRight pos c) = (show pos) ++ " " ++ (show c)
pCard :: ReadP Card
pCard = do
s <- many1 (satisfy isAlpha)
case lookup s cardNamesX of
Just c -> return c
Nothing -> pfail
pmPos = readS_to_P reads >>= \i -> if (i >= 0 && i <= 255) then return i else pfail
pMove = skipSpaces >> ((do c <- pCard; skipSpaces; pos <- pmPos; skipSpaces; return $ MoveLeft c pos) <++ (do pos <- pmPos; skipSpaces; c <- pCard; skipSpaces; return $ MoveRight pos c))
instance Read Card where
readsPrec _ = readP_to_S pCard
instance Read Move where
readsPrec _ = readP_to_S pMove
take1 :: String -> (Value -> Turn Value) -> Value
take1 name f = ValFunction name $ \v -> apply 1 >> f v
take2 :: String -> (Value -> Value -> Turn Value) -> Value
take2 name f = ValFunction name $ \v -> apply 1 >> return (take1 (name ++ "(" ++ show v ++ ")") (f v))
take3 :: String -> (Value -> Value -> Value -> Turn Value) -> Value
take3 name f = ValFunction name $ \v -> apply 1 >> return (take2 (name ++ "(" ++ show v ++ ")") (f v))
getInt :: Value -> Turn Int
getInt v = case v of ValInt x -> return x; _ -> fail "Expected Integer, got Function"
getSlotNo :: Value -> Turn Int
getSlotNo = getInt >=> \slot -> if (slot >= 0 && slot <= 255) then return slot else fail ("Invalid slot index " ++ (show slot))
getFunc :: Value -> Turn (Value -> Turn Value)
getFunc v = case v of ValFunction _ x -> return x; _ -> fail "Expected Function, got Integer"
tryApply :: Value -> Value -> Turn Value
tryApply f v = case f of ValFunction _ f' -> f' v; _ -> fail "Expected Function, got Integer"
readSlot :: (Game -> Player) -> Int -> Turn (Int, Field)
readSlot player n = Turn $ \game -> A.readArray (fields $ player game) n >>= \field -> return (game, Right (n, field))
writeSlot :: (Game -> Player) -> Int -> Field -> Turn ()
writeSlot player n field = Turn $ \game -> A.writeArray (fields $ player game) n field >> return (game, Right ())
writeValue :: (Game -> Player) -> Int -> Value -> Turn ()
writeValue player n val = readSlot player n >>= \(_, (_, vit)) -> writeSlot player n (val, vit)
getSlot :: (Game -> Player) -> Value -> Turn (Int, Field)
getSlot player = getSlotNo >=> readSlot player
getAliveSlot :: (Game -> Player) -> Value -> Turn (Int, Field)
getAliveSlot player = getSlot player >=> \r@(slot, (_, vit)) -> if (vit > 0) then return r else fail ("Slot " ++ (show slot) ++ " not alive")
autoSwitch :: Turn () -> Turn () -> Turn Value
autoSwitch (Turn norm) (Turn aut) = (Turn $ \game -> if (automode game) then aut game else norm game) >> return (card Card_I)
healSlot :: (Game -> Player) -> Int -> Int -> Turn ()
healSlot player amount slot = do
(_, (val, vit)) <- readSlot player slot
when (vit > 0) (writeSlot player slot (val, vitality $ vit + amount))
pierceSlot :: (Game -> Player) -> Int -> Int -> Turn ()
pierceSlot player amount slot = do
(_, (val, vit)) <- readSlot player slot
when (vit > 0) (writeSlot player slot (val, vitality $ vit - amount))
reviveSlot :: (Game -> Player) -> Int -> Turn ()
reviveSlot player slot = do
(_, (val, vit)) <- readSlot player slot
when (vit <= 0) (writeSlot player slot (val, 1))
card :: Card -> Value
card Card_I = take1 "I" $ return
card Card_Zero = ValInt 0
card Card_Succ = take1 "succ" $ getInt >=> return . int . (+1)
card Card_Dbl = take1 "dbl" $ getInt >=> return . int . (*2)
card Card_Get = take1 "get" $ getAliveSlot proponent >=> \(_, (val, _)) -> return val
card Card_Put = take1 "put" $ const $ return $ card Card_I
card Card_S = take3 "S" $ \f g x -> do
h <- tryApply f x
y <- tryApply g x
tryApply h y
card Card_K = take2 "K" $ \x _ -> return x
card Card_Inc = take1 "inc" $ getSlotNo >=> \slot -> autoSwitch (healSlot proponent 1 slot) (pierceSlot proponent 1 slot)
card Card_Dec = take1 "dec" $ getSlotNo >=> \slot -> autoSwitch (pierceSlot opponent 1 (255-slot)) (healSlot opponent 1 (255-slot))
card Card_Attack = take3 "attack" $ \i j n -> do
i <- getSlotNo i
n <- getInt n
autoSwitch (do
(_, (_, vit)) <- readSlot proponent i
when (vit < n) $ fail "Attack: not enough vitality"
pierceSlot proponent n i
j <- getSlotNo j
pierceSlot opponent ((n*9) `div` 10) (255-j)
) (do
(_, (_, vit)) <- readSlot proponent i
when (vit < n) $ fail "Attack: not enough vitality"
pierceSlot proponent n i
j <- getSlotNo j
healSlot opponent ((n*9) `div` 10) (255-j)
)
card Card_Help = take3 "help" $ \i j n -> do
i <- getSlotNo i
n <- getInt n
autoSwitch (do
(_, (_, vit)) <- readSlot proponent i
when (vit < n) $ fail "Help: not enough vitality"
pierceSlot proponent n i
j <- getSlotNo j
healSlot proponent ((n*11) `div` 10) (255-j)
) (do
(_, (_, vit)) <- readSlot proponent i
when (vit < n) $ fail "Help: not enough vitality"
pierceSlot proponent n i
j <- getSlotNo j
pierceSlot proponent ((n*11) `div` 10) (255-j)
)
card Card_Copy = take1 "copy" $ getSlotNo >=> readSlot opponent >=> \(_, (val, _)) -> return val
card Card_Revive = take1 "revive" $ getSlotNo >=> reviveSlot proponent >=> const (return $ card Card_I)
card Card_Zombie = take2 "zombie" $ \i x -> do
i <- getSlotNo i
(_, (_, vit)) <- readSlot opponent (255-i)
when (vit > 0) $ fail "Zombie: slot is still alive"
writeSlot opponent (255-i) (x, -1)
return $ card Card_I
runauto :: Turn ()
runauto = do
modifyGame $ \game -> game { automode = True }
forM_ [0..255] $ \slot -> do
(_, (val, vit)) <- readSlot proponent slot
when (vit == -1) $ do
try (reset >> tryApply val (card Card_I)) (\s -> liftIO $ hPutStrLn stderr $ "Error for zombie " ++ (show slot) ++ ": " ++ s)
writeSlot proponent slot (card Card_I, 0)
modifyGame $ \game -> game { automode = False }
runMove :: Move -> Turn ()
runMove m = do
runauto
try (do
(l, r, field) <- getmove m
reset
try (tryApply l r >>= writeValue proponent field) (\s -> do
writeValue proponent field (card Card_I)
liftIO (hPutStrLn stderr $ "Error: " ++ s))
) (\s -> liftIO (hPutStrLn stderr $ "Fatal Error in '" ++ show m ++ "': " ++ s))
getGame >>= \game -> liftIO $ hPutStrLn stderr (show game)
switchPlayer
where
getmove :: Move -> Turn (Value, Value, Int)
getmove (MoveLeft crd field) = do
(_, (f, _)) <- getAliveSlot proponent (ValInt field)
return (card crd, f, field)
getmove (MoveRight field crd) = do
(_, (f, _)) <- getAliveSlot proponent (ValInt field)
return (f, card crd, field)
initFields :: IO Fields
initFields = A.newArray (0, 255) (card Card_I, 10000)
initPlayer :: IO Player
initPlayer = initFields >>= return . Player
initAIState = return AIState
initGame :: IO Game
initGame = do
p0 <- initPlayer
p1 <- initPlayer
ai <- initAIState
return $ Game p0 p1 0 False 0 ai
runTurn :: Turn () -> Game -> IO Game
runTurn turn game = runTurn' turn game >>= \res -> case res of
(game', Left s) -> (hPutStrLn stderr $ "Error in turn: " ++ s) >> return game
(game', Right _) -> return game
runMoves :: [Move] -> Game -> IO Game
runMoves moves game = foldM (flip runTurn) game $ map runMove moves
testMoves :: [Move] -> IO Game
testMoves moves = initGame >>= runMoves moves
testMoves1 :: [Move] -> IO Game
testMoves1 moves = initGame >>= \game -> foldM (\g t -> runTurn (t >> switchPlayer) g) game $ map runMove moves