qm1-script/kapII-4.tex

192 lines
7.0 KiB
TeX
Raw Normal View History

\chapter{Symmetrie}
\section{Nichtentartung gebundener Zustände}
\paragraph{Satz} Gebundene Zustände $\left( \phi(x) \xrightarrow{x \rightarrow \pm \infty} 0 \right)$ in einer Dimension sind nicht entartet
\subparagraph{Beweis} durch Wiederspruch:
\begin{align}
-\frac{\hbar^2}{2m} \diffPs{x}^2 \phi_1 + V(x) \phi_1 &= E \phi_1 &\left| \phi_2 \right.\\
-\frac{\hbar^2}{2m} \diffPs{x}^2 \phi_2 + V(x) \phi_1 &= E \phi_2 &\left| \phi_1 \right.\\[15pt]
\rightarrow \diffPs{x}^2(\phi_1) \phi_2 + \phi_1 \diffPs{x}^2(\phi_2) &= 0\\
\diffPs{x}\left( \diffPs{x}(\phi_1) \phi_2 - \phi_1 \diffPs{x}(\phi_2) \right)\\
\rightarrow \diffPs{x}(\phi_1) \phi_2 - \phi_1 \diffPs{x}(\phi_2) &= \const
&= 0 ~ \left(\text{betrachte } x = \pm \infty \right)\\
\rightarrow \frac{\diffPs{x}(\phi_1)}{\phi_1} &= \frac{\diffPs{x}(\phi_2)}{\phi_2}\\[15pt]
\rightarrow \phi_1(x) &= \const \cdot \phi_2(x)
\end{align}
\begin{flushright}
$\square$
\end{flushright}
\section{Parität}
\paragraph{Satz} Falls $V(x) = V(-x)$ können die Eigenfunktionen von $H$ als symmetrisch oder antisymmetrisch gewählt werden.
\subparagraph{Beweis} Sei $\phi(x)$ Lösung der SG. Betrachte $\tilde{\phi}(x) \equiv \phi(-x)$:
\begin{align}
-\frac{\hbar^2}{2m} \diffPs{x}^2(\phi(x)) + V(x) \tilde{\phi(x)} &= -\frac{\hbar^2}{2m} \diffPs{x}^2(\tilde{\phi}(x)) + V(-x) \tilde{\phi}(x)\\[15pt]
\rightarrow \frac{\hbar^2}{2m} \diffPs{x}^2(\phi(x)) + V(-x) \phi(-x) &= E \phi(-x)\\
&= E \tilde{\phi}(x)
\end{align}
Also löst
\begin{equation}
\phi_{S,a}(x) \equiv \phi(x) \pm \phi(-x)
\end{equation}
die SG zu $E$.
\subparagraph{Alternativer Zugang über Paritätsoperator}
Definiere den Paritätsoperator $\Pi$ als:
\begin{equation}
\Pi \ket{x} \equiv \ket{-x} ~\left[~ \neq -\ket{x} ~\right]
\end{equation}
%\begin{figure}[h]
%\includegraphics{pdf/II/04-02-00.pdf}
%\caption{Beispiel für $\Pi$}
%\end{figure}
\begin{align}
\Pi \ket{\psi} &= \intgr{-\infty}{+\infty}{\Pi \ket{x} \braket{x}{\psi}}{x}\\
&= \intgr{-\infty}{+\infty}{\ket{-x} \psi(x)}{x} &(-x = y)\\
&= \intgr{-\infty}{+\infty}{\ket{y} \psi(-y)}{(-y)}\\
&= \intgr{-\infty}{+\infty}{\ket{y} \psi(-y)}{y} &\left| ~\bra{x} \right.\\
\rightarrow \dirac{x}{\Pi}{\psi} &= \intgr{-\infty}{+\infty}{\braket{x}{y} \psi(-y)}{y}\\
\braket{x}{\Pi \psi} &= \psi(-x)\\
\left( \Pi \psi \right)(x) &= \psi(-x)
\end{align}
Wirkung auf Impulse:
\begin{align}
\dirac{x}{\Pi}{p} &= p(-x)\\
&= \frac{1}{\sqrt{2 \pi \hbar}} e^{\frac{i p}{\hbar} (-x)}\\
&= \frac{1}{\sqrt{2 \pi \hbar}} e^{\frac{i}{\hbar} (-p) x}\\
&= \braket{x}{-p}\\[15pt]
\Pi \ket{p} &= \ket{-p}
\end{align}
Eigenschaften von $\Pi$:
\begin{align}
\Pi^2 \ket{x} &= \Pi \ket{-x} = \ket{x}\\
\rightarrow \Pi^2 &= \one\\
\rightarrow \Pi^{-1} &= \Pi
\rightarrow \text{Eigenwerte} &= \pm 1
\end{align}
Eigenfunktionen zu $+1$:
\begin{equation}
\Pi \ket{\psi} = +\ket{\psi}
\end{equation}
in Ortsdarstellung
\begin{align}
\braket{x \Pi}{\psi} &= + \braket{x}{\psi}
\psi(-x) &= \psi(x)
\end{align}
$\Pi$ ist hermitesch und unitär.\\[15pt]
Falls $[H, \Pi] = 0$, gibt es eine gemeinsame Eigenbasis; d.h. Eigenfunktionen von $H$ können als symmetrisch bzw. antisymmetrisch gewählt werden.\\[15pt]
Was ist $[H, \Pi]$ ?
\begin{enumerate}
\item $[V(\hat{x}), \Pi]$
\begin{align}
\dirac{x}{V(\hat{x})\Pi - V(\hat(x)}{x'} &= (V(x) - V(x')) \underbrace{\dirac{x}{\Pi}{x}}_{\braket{x}{-x'} = \delta(-x' - x)}\\
&= (V(x) - V(x')) \delta(x' + x)\\
&= \left\lbrace\begin{array}{ll} 0 & \text{falls } x' \neq -x \\ \underbrace{(V(x) - V(x'))}_{= 0 \text{ falls } V(x) = V(-x)}\delta(0) & \text{falls } x' = -x \end{array}\right.
\end{align}
\item $[\hat{p}^2, \Pi]$
\begin{align}
\dirac{p}{\hat{p}^2 \Pi - \Pi \hat{p}^2}{p'} &= \left(p^2 - {p'}^2 \right) \braket{p \Pi}{p'}\\
&= \left(p^2 - {p'}^2 \right) \braket{p}{-p'} = 0
\end{align}
\end{enumerate}
\begin{flushright}
$\square$
\end{flushright}
\section{Translationsoperator periodisches Potential\\und Bloch Theorem}
\paragraph{Definition} Translationoperator
%\begin{figure}[h]
%\includegraphics{pdf/II/04-03-00.pdf}
%\end{figure}
\begin{align}
\dirac{x}{T_a}{\psi} &\equiv \psi(x - a)\\
&= \sum_{n=0}^{\infty} \frac{(-a)^n}{n!} \diffPfrac{^n}{x^n} \psi(x)\\
&= e^{-a \diffP{x}} \psi(x)\\
&= \dirac{x}{e^{-\frac{i a}{\hbar} \hat{p}}}{\psi}
\end{align}
\begin{align}
\rightarrow T_a &= e^{-\frac{i a}{\hbar} \hat{p}}\\
&\approx \one - \frac{i a}{\hbar} \hat{p}
\end{align}
(Vergleiche: I.5.4 $D_{x/y/z}(\varepsilon) \approx \one - \frac{i \varepsilon}{\hbar} J_{x/y/z}$)\\[15pt]
$T_a$ unitär $\Rightarrow$ Eigenwerte sind vom Typ $\lambda_a = e^{-i \kappa a}$
\begin{align}
T_a \ket{\phi} &= e^{-i \kappa a} \ket{\phi} &\left| \bra{x} \right.\\
\phi(x - a) &= e^{-i \kappa a} \phi(x)
\end{align}
mit $\phi(x)$, der Eigenfunktion zu
\begin{equation}
x_a \equiv e^{-i \kappa a}
\end{equation}
(mit $\kappa$ beliebig reell)
%\begin{figure}[h]
%\includegraphics{pdf/II/04-03-01.pdf}
%\caption{Periodisches Potential}
%\end{figure}
Falls $[H, T_a] = 0$ gibt es gemeinsame Eigenfunktionen:
\begin{enumerate}
\item es gilt immer:
\begin{equation}
[\hat{p}^2, T_a] = 0
\end{equation}
\item $[v(\hat{x}), T_a]$
\begin{align}
\dirac{x'}{V(x) T_a - T_a V(\hat{x})}{x} &= (V(x) - V(x'))\underbrace{\dirac{x'}{T_a}{x}}_{\braket{x'}{x+a} = \delta(x' - (x - a))}\\
&= 0 \text{ falls } V(x) = V(x + a)
\end{align}
\end{enumerate}
\paragraph{Konsequenz (Bloch Theorem)} Es gibt gemeinsame Eigenfunktionen von $H$ und $T_a$:
\begin{align}
H \phi_\kappa(x) &= E \phi_\kappa(x)\\[15pt]
\phi_\kappa(x) &= e^{+i \kappa a} \phi_\kappa(x - a)
\end{align}
d.h. SG im Intervall $[0, a]$ lösen mit Randbedingung:
\begin{equation}
\phi(a) = e^{-i \kappa a} \phi(0)
\end{equation}
\section{Bandstruktur im Beispiel ``Dirac-Kamm''}
%\begin{figure}[h]
%\includegraphics{pdf/II/04-04-00.pdf}
%\end{figure}
\begin{equation}
V(x) = \alpha \sum_{j=-\infty}^{+\infty} \delta(x - j a)
\end{equation}
SG:
\begin{equation}
\left( -\frac{\hbar^2}{2m} \diffPs{x}^2 + V(x) \right) \phi(x) = E \phi(x)
\end{equation}
für $0 < x < a$:
\begin{equation}
\phi(x) = A \sin(k x) + B \cos(k x) ~, ~ k^2 = \frac{2m E}{\hbar^2}
\end{equation}
für $-a < x < 0$ (Bloch Theorem):
\begin{align}
\phi(x) &= e^{-i \kappa a} \phi(x + a)\\
&= e^{-i \kappa A} \left[ A \sin(k (x + a)) + B \cos(k (x + a)) \right]
\end{align}
Anschluss bei $x = 0$:
\begin{align}
\phi(+\varepsilon) = \phi(-\varepsilon):~ B &= e^{-i \kappa a} \left( A \sin(k a) + B \cos(k a) \right)\\[15pt]
\diffT{x}\phi(+\varepsilon) - \diffT{x}\phi(-\varepsilon) &= \frac{2m \alpha}{\hbar^2} \phi(0)\\
k A - e^{-i \kappa} \left(k A \cos(k a) - k B \sin(k a)\right) &= \frac{2 m \alpha}{\hbar^2} B
\end{align}
Lösung falls $\det M = 0$ mit
\begin{equation}
M \inlinematrix{A \\ B} = 0
\end{equation}
\begin{equation}
\cos(\kappa A) = \cos(k a) + \frac{m \alpha a}{\hbar^2} \frac{\sin(k a)}{k a}
\end{equation}
%\begin{figure}[h]
%\includegraphics{pdf/II/04-04-01.pdf}
%\end{figure}
in $z$ ist erlaubt:
\begin{equation}
z_n(\beta) \leq z \leq n\pi
\end{equation}
in $E$ ist erlaubt:
\begin{equation}
\frac{\hbar^2}{2 m a^2} z_n(\beta) \leq E \leq \frac{\hbar^2}{2 m a^2} (\pi n)^2
\end{equation}