2008-06-23 10:39:00 +00:00
%\includegraphics{excs/qm1_blatt06_SS08.pdf}
%\pagebreak
\chapter { Quantenmechanik I - Übungsblatt 6}
\section { Aufgabe 14: Spin-1-Teilchen}
\subsection * { a)}
2008-06-24 11:49:48 +00:00
\begin { align}
H & = A S_ z + B S_ x^ 2 \\
H & = A \hbar \Sigma _ z + B \hbar ^ 2 \Sigma _ x^ 2 \\
H & = A \hbar \inlinematrix { 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1} + \frac { B \hbar ^ 2} { 2} \inlinematrix { 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1} \\
H & = \hbar \inlinematrix { A+\frac { B \hbar } { 2} & 0 & \frac { B \hbar } { 2} \\ 0 & \frac { B \hbar } { 2} & 0 \\ \frac { B \hbar } { 2} & 0 & -A+\frac { B \hbar } { 2} }
\end { align}
2008-07-17 14:58:53 +00:00
$ det ( H - \lambda \einsmatrix ) = 0 $
2008-06-24 11:49:48 +00:00
\begin { align}
\lambda _ 1 & = B\hbar ^ 2 \\
\lambda _ 2 & = \frac { \hbar ^ 2} { 2} B (1 + \sqrt { 1 + \frac { 4 A^ 2} { \hbar ^ 2 B^ 2} } \\
2008-07-17 14:58:53 +00:00
\lambda _ 3 & = \frac { \hbar ^ 2} { 2} B (1-\sqrt { 1 + \frac { 4 A^ 2} { \hbar ^ 2 B} )}
2008-06-24 11:49:48 +00:00
\end { align}
\begin { align}
a & := A + \frac { \hbar B} { 2} \sqrt { 1+\frac { 4 A^ 2} { \hbar ^ 2 B^ 2} } \\
b & := \frac { \hbar B} { 2} \\
\ket { \phi _ 0} & = \inlinematrix { 0 \\ 1 \\ 0} &
\ket { \phi +} & = \frac { 1} { \sqrt { a^ 2+b^ 2} } \inlinematrix { a \\ 0 \\ b} &
\ket { \phi -} & = \frac { 1} { \sqrt { a^ 2+b^ 2} } \inlinematrix { -b \\ 0 \\ a} \\ \\
\ket { \psi (t)} & = c_ 0 e^ { -\i E_ 0 t} \ket { \phi _ 0} + c_ + e^ { -E_ + t} \ket { \psi _ +} + c_ - e^ { -E_ -t t} \ket { \phi -} \\ % muss da nicht e^\i?
\ket { \psi (0)} & = \ket { z+} & = \inlinematrix { 1 \\ 0 \\ 0} \\ \\
\end { align}
$ \Rightarrow c _ 0 = 0 $
\begin { align}
\frac { 1} { \sqrt { a^ 2+b^ 2} } (c_ + a - c_ - b) & \stackrel { !} { } 1 \\
\frac { 1} { \sqrt { a^ 2+b^ 2} } (c_ + b + c_ - a) & \stackrel { !} { } 0
\end { align}
$ \Rightarrow $
\begin { align}
c_ - & = \frac { -b\sqrt { a^ 2+b^ 2} } { a^ 2+b^ 2} \\
c_ + & = \frac { a\sqrt { a^ 2+b^ 2} } { a^ 2+b^ 2} \\
S_ x & = \hbar \Sigma _ x & = \hbar \inlinematrix { 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0}
\end { align}
2008-07-17 14:58:53 +00:00
Da $ \inlinematrix { l \\ o \\ m } S _ x \inlinematrix { n \\ o \\ p } = 0 $ folgt $ S _ x = S _ y = 0 $ %wo kommt das her, und wieso ist hier S_x=0, obwohl es oben != 0 ist
2008-06-24 11:49:48 +00:00
2008-06-23 10:39:00 +00:00
\subsection * { b)}
2008-06-24 11:49:48 +00:00
\begin { align}
S_ z & = \hbar \inlinematrix { 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1}
\end { align}
\begin { align}
2008-07-17 14:58:53 +00:00
\dirac { \psi (t)} { S_ z} { \psi (t)} & = \frac { 1} { \sbk { a^ 2+b^ 2} ^ 2} [(a^ 2-b^ 2)^ 2 + 4 a^ 2 b^ 2 \cosb { (E_ +-E_ -)t} ]
2008-06-24 11:49:48 +00:00
\end { align}
2008-06-23 10:39:00 +00:00
\section { Aufgabe 15: Benzol-Molekül (Teil 2)}
\subsection * { a)}
2008-06-24 11:49:48 +00:00
\begin { align}
2008-07-17 14:58:53 +00:00
P_ m H & = \norm { \braket { \phi _ m} { \psi (t)} } \\
\ket { \psi (t)} & = U(t,t_ 0) \ket { \psi (t)} \\
& = exp{ -\frac { \i } { \hbar } t H} \\
& = \sum { k=0} { 5} { exp(-\frac { \i } { \hbar } t \lambda _ k) \ket { \chi _ k} \braket { \chi _ k} { \phi _ 0} } \\ %warum 5?
& =^ 1 \frac { 1} { 6} \sum { k=0} { 5} { \sum { n=0} { 5} { exp(-\frac { \i } { \hbar } t (E-2Acos(\delta _ k)))} } \\ %warum diese umformung?
P_ m(t) & = \norm { \braket { \phi _ m} { \psi (t)} } \\
& = \frac { 1} { 6} \sum { k=0} { 5} { \sum { n=0} { 5} { exp(...)} \braket { \phi _ m} { \phi _ n} } \\ %geht die summe wirklich bis 5? und über was?
& =^ 2 \frac { 1} { 36} \norm { \sum { k} { biw wo?} { exp(-\frac { \i } { \hbar } t (E-2Acos(\delta _ k) + \i \delta _ k)} } \\ \\
& = ?
2008-06-24 11:49:48 +00:00
\end { align}
(1)
\begin { align}
2008-06-30 13:27:29 +00:00
\braket { \chi _ k} { \phi _ 0} & = \frac { 1} { \sqrt { 6} } \sum { n=0} { 5} { exp(-\i n \delta _ { keine ahnung} \braket { \phi _ n} { \phi _ 0} } \\ \\
2008-06-24 11:49:48 +00:00
& = \frac { 1} { \sqrt { 6} } e^ { -\i 0 \delta _ { keine ahnung} } \\
& = \frac { 1} { \sqrt { 6} }
\end { align}
(2)
\begin { align}
\braket { \phi _ m} { \phi _ n} = \delta _ { n m}
\end { align}
2008-06-23 10:39:00 +00:00
\subsection * { b)}
2008-06-24 11:49:48 +00:00
\begin { math}
\tau = \frac { 2\pi } { A} \hbar
\end { math}
\section { Aufgabe 16: Schrödingergleichung in Impulsraumdarstellung}
\begin { align} \\
%nach schrödingergleichung in ortsdarstellung gucken
\i \hbar \partial _ \tau \ket { \psi } & = H \ket { \psi } & \left | \bra { p} \right . \\
2008-07-17 14:58:53 +00:00
\i \hbar \partial _ t \psi (p) & = \dirac { p} { \frac { p^ 2} { 2m} +V(\hat { x} } { \psi }
2008-06-24 11:49:48 +00:00
\end { align}
2008-07-17 14:58:53 +00:00
\begin { align}
\int _ { -\infty } ^ { \infty } \text { dx} \dirac { p} { V(\hat { x} )} { x} \braket { x} { \psi }
2008-06-24 11:49:48 +00:00
& = \int _ { -\infty } ^ { \infty } \text { dx} V(x) \frac { 1} { \sqrt { 2\pi \hbar } } e^ { -\frac { \i p} { \hbar } x} \braket { x} { \psi } \\
2008-07-17 14:58:53 +00:00
& = \int _ { -\infty } ^ { \infty } \text { dx} \int _ { -\infty } ^ { \infty } \text { dp'} V(x)\frac { 1} { \sqrt { 2\pi \hbar } } e^ { -\frac { \i p} { \hbar } x} \braket { x} { p'} \braket { p'} { x} \\
& = \int _ { -\infty } ^ { \infty } \int _ { -\infty } ^ { \infty } \text { dx} \text { dp'} V(x)\frac { 1} { \sqrt { 2\pi \hbar } } e^ { -\frac { i(p-p')} { \hbar } x} \psi (p') \\
2008-06-24 11:49:48 +00:00
& = (2) % aus aufgabenblatt raussuchen
\end { align}
\begin { align}
2008-07-17 14:58:53 +00:00
%wo kommt das her
\dirac { p} { V(\hat { x} )} { \psi } & = \dirac { p} { V(\i \hbar \diffP { p} } { \psi } \\
& = V(\i \hbar \diffP { p} )\psi (p) %vertauschen von p und V: Regeln?
2008-06-24 11:49:48 +00:00
\end { align}