2008-06-25 10:22:01 +00:00
|
|
|
\chapter{Lineare Algebra}
|
2008-06-30 13:18:27 +00:00
|
|
|
\section{Allgemeines}
|
|
|
|
\subsection*{Definitionen}
|
|
|
|
\subsubsection*{Levi-Civita-Symbol:}
|
|
|
|
\begin{math}
|
|
|
|
\varepsilon_{12\dots n} = 1 \\
|
|
|
|
\varepsilon_{ij\dots u\dots v\dots} = -\varepsilon_{ij\dots v\dots u\dots}\\
|
|
|
|
\varepsilon_{ij\dots u\dots u\dots} = 0 \\
|
|
|
|
|
|
|
|
\levicivita{i,j,k} =
|
|
|
|
\begin{cases}
|
|
|
|
+1, & \mbox{falls }(i,j,k,\dots) \mbox{ eine gerade Permutation von } (1,2,3,\dots) \mbox{ ist,} \\
|
|
|
|
-1, & \mbox{falls }(i,j,k,\dots) \mbox{ eine ungerade Permutation von } (1,2,3,\dots) \mbox{ ist,} \\
|
|
|
|
0, & \mbox{wenn mindestens zwei Indizes gleich sind.}
|
|
|
|
\end{cases}
|
|
|
|
|
|
|
|
(\vec{a} \times \vec{b})_i = \sum_{j=1}^3 \sum_{k=1}^3 \levicivita{ijk} a_j b_k \\
|
|
|
|
\vec{a} \times \vec{b} = \levicivita{ijk} a_j b_k \vec{e_i} = \levicivita{ijk} a_i b_j \vec{e_k} \\
|
|
|
|
|
|
|
|
\det A = \levicivita{i_1 i_2 \dots i_n} A_{1i_1} A_{2i_2} \dots A_{ni_n}
|
|
|
|
|
|
|
|
\end{math}
|
|
|
|
\subsubsection*{Kronecker-Delta}
|
|
|
|
$\krondelta{i,j}= \begin{cases} 1 & \mbox{falls } i=j \\ 0 & \mbox{falls } i \neq j \end{cases}$ \\s
|
|
|
|
Die $n\times n$-Einheitsmatrix kann als $(\krondelta{ij})_{i,j\in\{1,\ldots,n\}}$ geschrieben werden.
|
|
|
|
|
|
|
|
\section{Matrix-Operationen}
|
|
|
|
\subsection*{Inversion}
|
2008-06-25 10:22:01 +00:00
|
|
|
\begin{math}
|
2008-06-30 13:18:27 +00:00
|
|
|
\hypertarget{fs_mtrx_inv_2d}{A^{-1} = \inlinematrix{a & b \\ c & d}^{-1} = \frac{1}{ad - bc} \inlinematrix{d & -b \\ -c & a}}
|
2008-06-25 10:22:01 +00:00
|
|
|
\end{math}
|
2008-06-30 13:18:27 +00:00
|
|
|
|