qm1-script/kapIII-4.tex

65 lines
2.0 KiB
TeX
Raw Normal View History

2008-08-08 12:29:25 +00:00
\chapter{Rotationsinvarianz in d=3}
\section{Drehimpulsalgebra}
Drehung mit dem Winkel $\phi$ um $\vec{n}$:
\begin{equation}
\ket{\tilde{\psi}} = D(\phi,\vec{n})\ket{\psi}
\end{equation}
mit
\begin{equation}
D(\phi,\vec{n}) = 1 - i\frac{\phi}{\hbar} J_{\vec{n}} + O(\phi^2)
\end{equation}
In () hatten wir die Relation
\begin{equation}
[J_x,J_y] = i\hbar J_z
\end{equation}
(etc. zyclisch). Diese Vertauschungsrelation bestimmt das Spektrum der $J$-Operatoren vollständig. Wir definieren ein $J^2$ zu:
\begin{equation}
J^2 = \vec{J}^2 = J_x^2 + J_y^2 + J_z^2
\end{equation}
und daraus folgt $\forall \alpha = x,y,z$
\begin{equation}
\left[ J^2, J_\alpha \right] = 0
\end{equation}
also haben $J^2$ und $J_z$ gemeinsame Eigenvektoren.
\begin{align}
J^2 \ket{\alpha,\beta} &= \alpha \ket{\alpha,\beta}\\
J_z \ket{\alpha,\beta} &= \beta \ket{\alpha,\beta}
\end{align}
In Anlehnung an Erzeuger und Vernichter definieren wir:
\begin{equation}
J_\pm \equiv J_x \pm iJ_y
\end{equation}
mit dem Kommutator
\begin{align}
[J_z, J_\pm] &= [J_z,J_x + iJ_y]\\
&= i\hbar J_y \pm i(-i\hbar) J_x
&= \pm \hbar J_\pm
\end{align}
und
\begin{equation}
[J^2,J_\pm] = 0
\end{equation}
Vergleiche Harmonischen Oszillator:
\begin{equation}
[\nOp,\aDs] = -\aDs; ~ [\nOp,\aCr] = \aCr
\end{equation}
mit $J_\pm$ ist dann
\begin{align}
J_z J_+ \ket{\alpha,\beta} &= (J_+ J_z + i\hbar J_+) \ket{\alpha,\beta}\\
&= (\beta + \hbar) J_+ \ket{\alpha,\beta}\\
J_z J_- \ket{\alpha,\beta} &= (\beta - \hbar) J_- \ket{\alpha,\beta}
\end{align}
und
\begin{equation}
J^2 J_+ \ket{\alpha,\beta} = J_+ J^2 \ket{\alpha,\beta} = \alpha J_+ \ket{\alpha,\beta}
\end{equation}
also
\begin{align}
J_+ \ket{\alpha,\beta} &= c_+(\alpha,\beta) \ket{\alpha,\beta + 1}\\
J_- \ket{\alpha,\beta} &= c_-(\alpha,\beta) \ket{\alpha,\beta - 1}
\end{align}
$\beta$-Spektrum ist eingeschränkt wegen:
\begin{equation}
0 \leq \dirac{\alpha,\beta}{J_x^2 + J_y^2}{\alpha,\beta} = \dirac{\alpha,\beta}{J^2-J_z^2}{\alpha,\beta} = (\alpha-\beta)^2 \underbrace{\braket{\alpha,\beta}{\alpha,\beta}}_{\geq 0}
\end{equation}