[vorlesung] WIP für Kapitel II.3

This commit is contained in:
Oliver Groß 2008-06-30 15:06:14 +02:00
parent cc6c5ed819
commit 15c02510da
1 changed files with 76 additions and 1 deletions

View File

@ -24,4 +24,79 @@ der Wahscheinlichkeitsstromdichte (``Kontinuitätsgleichung''; gilt für jede Er
% &= \frac{1}{\sqrt{2 \pi \hbar}} \frac{p}{}
\end{align}
\section{Streuung an der Potentialstufe}
\section{Streuung an der Potentialstufe}
%\begin{figure}[h]
%\includegraphics{pdf/II/03-02-00.pdf}
%\end{figure}
\paragraph*{klassisch}
\subparagraph*{Fall 1} $E > V_0$
\begin{align}
x < 0:~ & p(x < 0) = \sqrt{2m E}\\
x > 0:~ & p(x > 0) = \sqrt{2m (E - V_0)}
\end{align}
Teilchen passiert die Potentialstufe, verliert Impuls
\subparagraph*{Fall 2} $E < V_0$
\begin{equation}
p(x < 0) = \sqrt{2m E}
\end{equation}
Teilchen wird reflektiert
\paragraph*{quantal}
\subparagraph*{Fall 1} $E > 0$\\
stationäre SG:
\begin{equation}
\left( -\frac{\hbar^2}{2m} \diffPs{x}^2 V(x) \right) \phi(x) = E \phi(x)
\end{equation}
links: $x < 0$
\begin{equation}
\diffPs{x}^2 \phi(x) = -k^2 \phi(x)
\end{equation}
mit
\begin{equation}
k = \sqrt{\frac{2m}{\hbar^2}}
\end{equation}
Lösung:
\begin{equation}
\phi(x) = A e^{i k x} + B e^{-i k x}
\end{equation}
rechts: $x > 0$
\begin{equation}
\left( -\frac{\hbar^2}{2m} \diffPs{x}^2 + V_0 \right) \phi(x) = E \phi(x)
\end{equation}
Lösung:
\begin{equation}
\phi(x) = C e^{i q x} + D e^{-i q x}
\end{equation}
mit
\begin{equation}
q = \sqrt{\frac{2m (E - V_0)}{\hbar^2}}
\end{equation}
Randbedinung bei $x = 0$
\begin{align}
\phi(-\varepsilon) &= \phi(+\varepsilon)\\
\diffPs{x} \phi(-\varepsilon) &= \diffPs{x} \phi(+\varepsilon)\\
\rightarrow A + B &= C + D\\
i k (A - B) &= i q (C - D)\\[15pt]
\inlinematrix{1 & 1 \\ i k & -i k} \inlinematrix{A \\ B} &= \inlinematrix{1 & 1 \\ i q & -i q} \inlinematrix{C \\ D}\\
\inlinematrix{A \\ B} &= \frac{1}{2k} \inlinematrix{k+q & k-q \\ k-q & k+q} \inlinematrix{C \\ D}
\end{align}
$\rightarrow$ Randbedingung einer von links laufenden Welle\\
$\Rightarrow$ keine Komponente einer von rechts einlaufenden Welle für $x > 0$ erlaubt!\\
$\Rightarrow$ $D \equiv 0$\\
o.B.d.A.: $A = 1$
\begin{align}
A &= \frac{k + q}{2k} C ~ \rightarrow C = \frac{2k}{k+q}\\
B &= \frac{k - q}{2k} C ~ \rightarrow B = \frac{k - q}{k + q}
\end{align}
Strom links: $x < 0$
\begin{align}
j(x < 0) &= \frac{\hbar}{m} \im{\diffPs{x}\phi ~ \phi^*}\\
&= \frac{\hbar}{m} \im{i k \left(A e^{i k x} - B e^{-i k x} \right) \left(A^* e^{- i k x} + B^* e^{i k x}\right)}\\
&= \frac{\hbar}{m} \im{ik \left( A A^* - B B^*\right) + ik \left( A B^* e^{2 i k x} - A^* B e^{-2 i k x} \right)}\\
&= \frac{\hbar}{m} k \left( 1 - \left( \frac{k - q}{k + q} \right)^2 \right) \equiv j_I - j_R
\end{align}
mit
\begin{align}
j_I &= \frac{\hbar k}{m} &\text{einfallend}\\
j_R &= \frac{\hbar}{m} k \left( \frac{k - q}{k + q} \right)^2 \equiv R j_I &\text{reflectiert}
\end{align}