hbox overflow

This commit is contained in:
Daniel Bahrdt 2008-07-24 20:54:59 +02:00
parent da28ac4f5d
commit 225479fb08

View File

@ -77,7 +77,7 @@ $p \deq p^2 = p \cdot p = \ket{\Phi} \underbrace{\bra{\Phi} \ket{\Phi}}_{=1} \br
p_0(0) &= 1 \\
\diffTfrac{p_0(t)}{t} &\leq 0 \\
-\diffTfrac{p_0}{t} &= \frac{2 \Delta H}{\hbar} \sqrt{p_0(t) (1 - p_0(t))} \\
\frac{\text{d}p_0}{\sqrt{p_0 (1 - p_0)}} &= -\frac{2 \Delta H}{\hbar} \text{d}t &\left| \text{Integral drüber} \right.
\frac{\text{d}p_0}{\sqrt{p_0 (1 - p_0)}} &= -\frac{2 \Delta H}{\hbar} \text{d}t &\left| \text{Integral drüber} \right. \\
\intgr{1}{p_0}{\frac{\text{d}p'_0}{\sqrt{p'_0 (1 - p'_0)}}}{p'} &= -\frac{2 \Delta H}{\hbar} \intgr{0}{t}{}{t'} \\
\arcsinb{2 p_0(t) -1} &= -\frac{2 \Delta H}{\hbar} t + c \\
p_0(t) &= \frac{1}{2} \sinb{-\frac{2 \Delta H}{\hbar} t + c} + \frac{1}{2} %fehler bei 1/2?