hbox overflow
This commit is contained in:
parent
225479fb08
commit
3d47ce3f8e
15
ueb5.tex
15
ueb5.tex
@ -1,5 +1,5 @@
|
|||||||
%\includegraphics{excs/qm1_blatt05_SS08.pdf}
|
\includegraphics{excs/qm1_blatt05_SS08.pdf}
|
||||||
%\pagebreak
|
\pagebreak
|
||||||
|
|
||||||
\chapter{Quantenmechanik I - Übungsblatt 5}
|
\chapter{Quantenmechanik I - Übungsblatt 5}
|
||||||
\section{Aufgabe 11: Spin-1-Teilchen im konstanten Magnetfeld}
|
\section{Aufgabe 11: Spin-1-Teilchen im konstanten Magnetfeld}
|
||||||
@ -22,9 +22,11 @@
|
|||||||
&= \abs{\frac{1}{2} \inlinematrix{1 \\ \sqrt{2} \\ 1} \cdot \inlinematrix{\frac{1}{2} \cdot e^{\i \gamma \mtrx{B} t} \\
|
&= \abs{\frac{1}{2} \inlinematrix{1 \\ \sqrt{2} \\ 1} \cdot \inlinematrix{\frac{1}{2} \cdot e^{\i \gamma \mtrx{B} t} \\
|
||||||
\frac{\sqrt{2}}{2} \\ \frac{1}{2} \cdot e^{-\i \gamma \mtrx{B} t}}}^2 \\
|
\frac{\sqrt{2}}{2} \\ \frac{1}{2} \cdot e^{-\i \gamma \mtrx{B} t}}}^2 \\
|
||||||
&= \frac{1}{4} \sbk{1 + e^{\i \gamma \mtrx{B}} + e^{-\i \gamma \mtrx{B} t}}^2 \\
|
&= \frac{1}{4} \sbk{1 + e^{\i \gamma \mtrx{B}} + e^{-\i \gamma \mtrx{B} t}}^2 \\
|
||||||
&= \frac{1}{4} \sbk{1 + \cosb{\gamma \mtrx{B} t}}^2 \\
|
&= \frac{1}{4} \sbk{1 + \cosb{\gamma \mtrx{B} t}}^2
|
||||||
&\Rightarrow
|
\end{align}
|
||||||
\probb{\Sigma_x \cequiv +1}{\psi(t)} &= \frac{1}{2} \sin^2\sbk{\gamma \mtrx{B} t} %da stimmt wat net
|
$\Rightarrow$
|
||||||
|
\begin{align}
|
||||||
|
\probb{\Sigma_x \cequiv +1}{\psi(t)} &= \frac{1}{2} \sin^2\sbk{\gamma \mtrx{B} t} \\ %da stimmt wat net
|
||||||
\probb{\Sigma_y \cequiv +1}{\psi(t)} &= \frac{1}{4} \sbk{1 - \cosb{\gamma \mtrx{B} t}}^2
|
\probb{\Sigma_y \cequiv +1}{\psi(t)} &= \frac{1}{4} \sbk{1 - \cosb{\gamma \mtrx{B} t}}^2
|
||||||
\end{align}
|
\end{align}
|
||||||
|
|
||||||
@ -92,7 +94,7 @@ $R \ket{\Phi} = \underbrace{e^{\i \frac{2 \pi s}{6}}}_{\text{Eigenwerte}} \ket{\
|
|||||||
|
|
||||||
\subsection*{c)}
|
\subsection*{c)}
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\ket{\chi_s} &= \frac{1}{\sqrt{6}} \sum_{n=0}^5 e^{\i n \delta_s} \ket{\Phi_n}
|
\ket{\chi_s} &= \frac{1}{\sqrt{6}} \sum_{n=0}^5 e^{\i n \delta_s} \ket{\Phi_n} \\
|
||||||
\detb{\mtrx{R} - \sbk{\lambda_s \one}} &\Rightarrow \\
|
\detb{\mtrx{R} - \sbk{\lambda_s \one}} &\Rightarrow \\
|
||||||
e^{\i \delta_s} x_1 &= -x2 \\
|
e^{\i \delta_s} x_1 &= -x2 \\
|
||||||
e^{\i \delta_s} x2 &= -x3 \\
|
e^{\i \delta_s} x2 &= -x3 \\
|
||||||
@ -109,7 +111,6 @@ Die Eigenvektoren lauten dann:
|
|||||||
&= E_0 - 2 A \cosb{\delta_s} \\
|
&= E_0 - 2 A \cosb{\delta_s} \\
|
||||||
&= E_s
|
&= E_s
|
||||||
\end{align}
|
\end{align}
|
||||||
|
|
||||||
Die Gesamtenergie beträgt dann:
|
Die Gesamtenergie beträgt dann:
|
||||||
\equationblock{E_ges = 6 E_0 - 8 A}
|
\equationblock{E_ges = 6 E_0 - 8 A}
|
||||||
$E_{Kekule} = 3 \sbk{E_{Ethen}} = 6 E_0 - 6 A$ (Pauli-Prinzip)
|
$E_{Kekule} = 3 \sbk{E_{Ethen}} = 6 E_0 - 6 A$ (Pauli-Prinzip)
|
||||||
|
Loading…
Reference in New Issue
Block a user