formelsammlung: kommutator, levicivita, reihenentwicklungen

This commit is contained in:
Daniel Bahrdt 2008-07-02 21:06:47 +02:00
parent 7797cfd7f0
commit 4e936195d1

View File

@ -1,29 +1,50 @@
\chapter{Lineare Algebra} \chapter{Lineare Algebra}
\section{Allgemeines} \section{Allgemeines}
\subsection*{Definitionen} \subsection{Definitionen}
\subsubsection*{Kommutator:}
\begin{equation} [A,B] = AB - BA \end{equation}
Der Kommutator von g und h ist genau dann gleich dem neutralen Element, wenn g und h kommutieren. \\
Sei $a$, $b$ und $c$ Elemente einer assoziativen Algebra und $\lambda$ ein Skalar (Element des Grundkörpers).
\begin{enumerate}
\item Alternierend (antisymmetrisch):
\begin{equation} [a,b]=-[b,a] \end{equation}
\item Linear:
\begin{equation} [\lambda a+b,c]=\lambda [a,c] + [b,c] \end{equation}
\item Jacobi-Identität:
\begin{equation} [a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0 \end{equation}
\item Leibnizregel(Produktregel):
\begin{equation} [a,bc] = [a,b]c+b[a,c] \end{equation}
\end{enumerate}
Aufgrund der Eigenschaften 1, 2 und 3 wird jede assoziative Algebra $A$ mit dem Kommutator als Lie-Klammer zu einer Lie-Algebra, die teilweise mit $A^-$ bezeichnet wird. \\
Eigenschaft 4 bedeutet, daß die Abbildung $b\mapsto [a,b]$ eine Derivation ist.
\subsubsection*{Levi-Civita-Symbol:} \subsubsection*{Levi-Civita-Symbol:}
\begin{math} \begin{math}
\varepsilon_{12\dots n} = 1 \\ \varepsilon_{12\dots n} = 1 \\
\varepsilon_{ij\dots u\dots v\dots} = -\varepsilon_{ij\dots v\dots u\dots}\\ \varepsilon_{ij\dots u\dots v\dots} = -\varepsilon_{ij\dots v\dots u\dots}\\
\varepsilon_{ij\dots u\dots u\dots} = 0 \\ \varepsilon_{ij\dots u\dots u\dots} = 0 \\
\levicivita{i,j,k} = \levicivita{i,j,k} =
\begin{cases} \begin{cases}
+1, & \mbox{falls }(i,j,k,\dots) \mbox{ eine gerade Permutation von } (1,2,3,\dots) \mbox{ ist,} \\ +1, & \mbox{falls }(i,j,k,\dots) \mbox{ eine gerade Permutation von } (1,2,3,\dots) \mbox{ ist,} \\
-1, & \mbox{falls }(i,j,k,\dots) \mbox{ eine ungerade Permutation von } (1,2,3,\dots) \mbox{ ist,} \\ -1, & \mbox{falls }(i,j,k,\dots) \mbox{ eine ungerade Permutation von } (1,2,3,\dots) \mbox{ ist,} \\
0, & \mbox{wenn mindestens zwei Indizes gleich sind.} 0, & \mbox{wenn mindestens zwei Indizes gleich sind.}
\end{cases} \end{cases} \\
(\vec{a} \times \vec{b})_i = \sum_{j=1}^3 \sum_{k=1}^3 \levicivita{ijk} a_j b_k \\ (\vec{a} \times \vec{b})_i = \sum_{j=1}^3 \sum_{k=1}^3 \levicivita{ijk} a_j b_k \\
\vec{a} \times \vec{b} = \levicivita{ijk} a_j b_k \vec{e_i} = \levicivita{ijk} a_i b_j \vec{e_k} \\ \vec{a} \times \vec{b} = \levicivita{ijk} a_j b_k \vec{e_i} = \levicivita{ijk} a_i b_j \vec{e_k} \\
\det A = \levicivita{i_1 i_2 \dots i_n} A_{1i_1} A_{2i_2} \dots A_{ni_n} \det A = \levicivita{i_1 i_2 \dots i_n} A_{1i_1} A_{2i_2} \dots A_{ni_n}
\end{math} \end{math}
\subsubsection*{Kronecker-Delta} \subsubsection*{Kronecker-Delta}
$\krondelta{i,j}= \begin{cases} 1 & \mbox{falls } i=j \\ 0 & \mbox{falls } i \neq j \end{cases}$ \\s $\krondelta{i,j}= \begin{cases} 1 & \mbox{falls } i=j \\ 0 & \mbox{falls } i \neq j \end{cases}$ \\
Die $n\times n$-Einheitsmatrix kann als $(\krondelta{ij})_{i,j\in\{1,\ldots,n\}}$ geschrieben werden. Die $n\times n$-Einheitsmatrix kann als $(\krondelta{ij})_{i,j\in\{1,\ldots,n\}}$ geschrieben werden.
\subsubsection*{Reihenentwicklungen}
\begin{align}
exp(x) = \sum_{n = 0}^{\infty} {\frac{x^n}{n!}} \\
sin (x) = \sum_{n=0}^\infty (-1)^n\frac{x^{2n+1}}{(2n+1)!} \\
cos (x) = \sum_{n=0}^\infty (-1)^n\frac{x^{2n}}{(2n)!}
\end{align}
\section{Matrix-Operationen} \section{Matrix-Operationen}
\subsection*{Inversion} \subsection*{Inversion}
\begin{math} \begin{math}