übungen hinzugefügt, formelsammlung, weitere mathe/physik kommandos
This commit is contained in:
parent
516481264c
commit
5a540bb4bd
0
formelsammlung.tex
Normal file
0
formelsammlung.tex
Normal file
6
math.tex
6
math.tex
@ -7,6 +7,7 @@
|
|||||||
\newcommand{\setQ}{\mathbbm{Q}}
|
\newcommand{\setQ}{\mathbbm{Q}}
|
||||||
\newcommand{\setR}{\mathbbm{R}}
|
\newcommand{\setR}{\mathbbm{R}}
|
||||||
\newcommand{\setC}{\mathbbm{C}}
|
\newcommand{\setC}{\mathbbm{C}}
|
||||||
|
\newcommand{\einsmatrix}{\mathbbm{1}}
|
||||||
\newcommand{\inlinematrix}[1]{\begin{pmatrix} #1 \end{pmatrix}}
|
\newcommand{\inlinematrix}[1]{\begin{pmatrix} #1 \end{pmatrix}}
|
||||||
\newcommand{\inlinematrixu}[1]{\begin{matrix} #1 \end{matrix}}
|
\newcommand{\inlinematrixu}[1]{\begin{matrix} #1 \end{matrix}}
|
||||||
\newcommand{\inlinematrixd}[2]{\left( \begin{matrix} #1\vphantom{#2} \end{matrix} ~\right| \left. \begin{matrix} \vphantom{#1}#2 \end{matrix} \right)}
|
\newcommand{\inlinematrixd}[2]{\left( \begin{matrix} #1\vphantom{#2} \end{matrix} ~\right| \left. \begin{matrix} \vphantom{#1}#2 \end{matrix} \right)}
|
||||||
@ -28,4 +29,7 @@
|
|||||||
\newcommand{\diffT}[1]{\frac{\text{d}}{\text{d} #1}}
|
\newcommand{\diffT}[1]{\frac{\text{d}}{\text{d} #1}}
|
||||||
\newcommand{\diffPfrac}[2]{\frac{\partial #1}{\partial #2}}
|
\newcommand{\diffPfrac}[2]{\frac{\partial #1}{\partial #2}}
|
||||||
\newcommand{\intgr}[4]{\int_{#1}^{#2} #3 ~\text{d}#4}
|
\newcommand{\intgr}[4]{\int_{#1}^{#2} #3 ~\text{d}#4}
|
||||||
\newcommand{\intgru}[2]{\int #1 ~\text{d}#2}
|
\newcommand{\intgru}[2]{\int #1 ~\text{d}#2}
|
||||||
|
|
||||||
|
\newcommand{\sum}[3]{\Sigma_{#1}^{#2} #3}
|
||||||
|
\newcommand{\prod}[3]{\Pi_{#1}^{#2} #3}
|
||||||
|
@ -45,6 +45,7 @@
|
|||||||
% \include{ueb4}
|
% \include{ueb4}
|
||||||
% \include{ueb5}
|
% \include{ueb5}
|
||||||
% \include{ueb6}
|
% \include{ueb6}
|
||||||
|
% \inlcude{ueb7}
|
||||||
|
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
110
ueb6.tex
110
ueb6.tex
@ -4,10 +4,116 @@
|
|||||||
\chapter{Quantenmechanik I - Übungsblatt 6}
|
\chapter{Quantenmechanik I - Übungsblatt 6}
|
||||||
\section{Aufgabe 14: Spin-1-Teilchen}
|
\section{Aufgabe 14: Spin-1-Teilchen}
|
||||||
\subsection*{a)}
|
\subsection*{a)}
|
||||||
|
\begin{align}
|
||||||
|
H &= A S_z + B S_x^2 \\
|
||||||
|
H &= A \hbar \Sigma_z + B \hbar^2 \Sigma_x^2 \\
|
||||||
|
H &= A \hbar \inlinematrix{1 &0 &0 \\ 0 &0 &0 \\ 0 &0 &-1} + \frac{B \hbar^2}{2} \inlinematrix{1 &0 &1 \\ 0 &2 &0 \\ 1 &0 &1} \\
|
||||||
|
H &= \hbar \inlinematrix{A+\frac{B \hbar}{2} &0 &\frac{B \hbar}{2} \\ 0 &\frac{B \hbar}{2} &0 \\ \frac{B \hbar}{2} &0 &-A+\frac{B \hbar}{2}}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
|
||||||
|
$det(H-\lambda \einsmatrix) = 0 \\$
|
||||||
|
\begin{align}
|
||||||
|
\lambda_1 &= B\hbar^2 \\
|
||||||
|
\lambda_2 &= \frac{\hbar^2}{2} B (1 + \sqrt{1 + \frac{4 A^2}{\hbar^2 B^2}} \\
|
||||||
|
\lambda_3 &= \frac{\hbar^2}{2} B (1-\sqrt{1 + \frac{4 A^2}{\hbar^2 B}}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
a &:= A + \frac{\hbar B}{2} \sqrt{1+\frac{4 A^2}{\hbar^2 B^2}} \\
|
||||||
|
b &:= \frac{\hbar B}{2} \\
|
||||||
|
\ket{\phi_0} &= \inlinematrix{0 \\ 1 \\ 0} &
|
||||||
|
\ket{\phi+} &= \frac{1}{\sqrt{a^2+b^2}} \inlinematrix{a \\ 0 \\ b} &
|
||||||
|
\ket{\phi-} &= \frac{1}{\sqrt{a^2+b^2}} \inlinematrix{-b \\ 0 \\ a} \\ \\
|
||||||
|
\ket{\psi(t)} &= c_0 e^{-\i E_0 t} \ket{\phi_0} + c_+ e^{-E_+ t} \ket{\psi_+} + c_- e^{-E_-t t} \ket{\phi-} \\ % muss da nicht e^\i?
|
||||||
|
\ket{\psi(0)} &= \ket{z+} &= \inlinematrix{1 \\ 0 \\ 0} \\ \\
|
||||||
|
\end{align}
|
||||||
|
$\Rightarrow c_0 = 0$
|
||||||
|
\begin{align}
|
||||||
|
\frac{1}{\sqrt{a^2+b^2}}(c_+ a - c_- b) &\stackrel{!}{} 1 \\
|
||||||
|
\frac{1}{\sqrt{a^2+b^2}}(c_+ b + c_- a) &\stackrel{!}{} 0
|
||||||
|
\end{align}
|
||||||
|
$\Rightarrow $
|
||||||
|
\begin{align}
|
||||||
|
c_- &= \frac{-b\sqrt{a^2+b^2}}{a^2+b^2} \\
|
||||||
|
c_+ &= \frac{a\sqrt{a^2+b^2}}{a^2+b^2} \\
|
||||||
|
S_x &= \hbar \Sigma_x &= \hbar \inlinematrix{0 &1 &0 \\ 1 &0 &1 \\ 0 &1 &0}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
Da $\inlinematrix{l \\ o \\ m} S_x \inlinematrix{n \\ o \\ p} = 0}$ folgt $S_x = S_y = 0$ %wo kommt das her, und wieso ist hier S_x=0, obwohl es oben != 0 ist
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\subsection*{b)}
|
\subsection*{b)}
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
S_z &= \hbar \inlinematrix{1 &0 &0 \\ 0 &0 &0 \\ 0 &0 &-1}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
\dirac{\psi(t)}{S_z}{\psi(t)} &= \frac{1}{(a^2+b^2)^2} [(a^2-b^2)^2 + 4a^2b^2cos((E_+-E_-)t)]}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\section{Aufgabe 15: Benzol-Molekül (Teil 2)}
|
\section{Aufgabe 15: Benzol-Molekül (Teil 2)}
|
||||||
\subsection*{a)}
|
\subsection*{a)}
|
||||||
\subsection*{b)}
|
\begin{align}
|
||||||
|
P_m H &= \norm{\braket{\phi_m}{\psi(t)}} \\
|
||||||
|
\ket{\psi(t)} &= U(t,t_0) \ket{\psi(t)} \\ \\
|
||||||
|
&= exp(-\frac{\i}{\hbar} t H} \\
|
||||||
|
&= \sum{k=0}{5}{exp(-\frac{\i}{\hbar} t \lambda_k) \ket{\chi_k} \braket{\chi_k}{\phi_0}} \\ %warum 5?
|
||||||
|
&=^1 \frac{1}{6} \sum{k=0}{5}{\sum{n=0}{5}{exp(-\frac{\i}{\hbar} t (E-2Acos(\delta_k)))}} \\ %warum diese umformung?
|
||||||
|
P_m(t) &= \norm{\braket{\phi_m}{\psi(t)}} \\
|
||||||
|
&= \frac{1}{6} \sum{k=0}{5}{\sum{n=0}{5}{exp(...)}\braket{\phi_m}{\phi_n}} \\ %geht die summe wirklich bis 5? und über was?
|
||||||
|
&=^2 \frac{1}{36} \norm{\sum{k}{biw wo?}{exp(-\frac{\i}{\hbar} t (E-2Acos(\delta_k) + \i \delta_k)}} \\ \\
|
||||||
|
&= ?
|
||||||
|
\end{align}
|
||||||
|
(1)
|
||||||
|
\begin{align}
|
||||||
|
\braket{\chi_k}{\phi_0} &= \frac{1}{\sqrt{6}} \sum{n=0}{5}{exp(-\i n \delta_{keine ahnung}\bracket{\phi_n}{\phi_0}} \\ \\
|
||||||
|
&= \frac{1}{\sqrt{6}} e^{-\i 0 \delta_{keine ahnung}} \\
|
||||||
|
&= \frac{1}{\sqrt{6}}
|
||||||
|
\end{align}
|
||||||
|
(2)
|
||||||
|
\begin{align}
|
||||||
|
\braket{\phi_m}{\phi_n} = \delta_{n m}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\subsection*{b)}
|
||||||
|
\begin{math}
|
||||||
|
\tau = \frac{2\pi}{A}\hbar
|
||||||
|
\end{math}
|
||||||
|
|
||||||
|
|
||||||
|
\section{Aufgabe 16: Schrödingergleichung in Impulsraumdarstellung}
|
||||||
|
|
||||||
|
\begin{align} \\
|
||||||
|
%nach schrödingergleichung in ortsdarstellung gucken
|
||||||
|
\i \hbar \partial_\tau \ket{\psi} &= H \ket{\psi} & \left| \bra{p}\right. \\
|
||||||
|
\i \hbar \partial_\t \psi(p) &= \dirac{p}{\frac{p^2}{2m}+V(\hat{x}}{\psi}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
\begin{align}}
|
||||||
|
\int_{-\infty}^{\infty} \text{dx} \dirac{p}{V(\hat[x})}{x}\braket{x}{\psi} \\
|
||||||
|
&= \int_{-\infty}^{\infty} \text{dx} V(x) \frac{1}{\sqrt{2\pi\hbar}}e^{-\frac{\i p}{\hbar}x}\braket{x}{\psi} \\
|
||||||
|
&= \int_{-\infty}^{\infty} \text{dx} \int_{-\infty}^{\infty} \text{dp'} V(x)\frac{1}{\sqrt{2\pi\hbar}e^{-\frac{\i p}{\hbar}x}\braket{x}{p'}\braket{p'}{x} \\ \\
|
||||||
|
&= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \text{dx} \text{dp'} V(x)\frac{1}{\sqrt{2\pi\hbar}e^{-\frac{i(p-p')}{\hbar}x}\psi(p') \\
|
||||||
|
&= (2) % aus aufgabenblatt raussuchen
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
%wo kommt das her?
|
||||||
|
\dirac{p}{V(\hat{x}}{\psi} &= \dirac{p}{V(\i\hbar\diffP{p}}{\psi} \\
|
||||||
|
&= V(\i\hbar\diffP{p})\psi(p) %vertauschen von p und V: Regeln?
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\i \hbar
|
||||||
|
|
||||||
\section{Aufgabe 16: Schrödingergleichung in Impulsraumdarstellung}
|
|
16
ueb7.tex
16
ueb7.tex
@ -0,0 +1,16 @@
|
|||||||
|
%\includegraphics{excs/qm1_blatt05_SS08.pdf}
|
||||||
|
%\pagebreak
|
||||||
|
|
||||||
|
\chapter{Quantenmechanik I - Übungsblatt 5}
|
||||||
|
\section{Aufgabe 11: Spin-1-Teilchen im konstanten Magnetfeld}
|
||||||
|
\subsection*{a)}
|
||||||
|
\subsection*{b)}
|
||||||
|
\subsection*{c)}
|
||||||
|
|
||||||
|
\section{Aufgabe 12: Das Ethen-Molekül}
|
||||||
|
|
||||||
|
\section{Aufgabe 13: Das Benzol-Molekül}
|
||||||
|
\subsection*{a)}
|
||||||
|
\subsection*{b)}
|
||||||
|
\subsection*{c)}
|
||||||
|
\subsection*{d)}
|
Loading…
Reference in New Issue
Block a user