Übungsblatt 7
This commit is contained in:
parent
dec7320f66
commit
afc8721083
44
ueb7.tex
44
ueb7.tex
@ -73,6 +73,7 @@ mit den \hyperlink{fs_mtrx_inv_2d}{Inversen} von: (1) und (2) % geschweifte klam
|
|||||||
\inlinematrix{A & B} = \inlinematrix{\frac{1}{2} & -\frac{\i}{2k}\\ \frac{1}{2} & \frac{\i}{2k}} \inlinematrix{1 & 1 \\ q & -q} \inlinematrix{C & D}
|
\inlinematrix{A & B} = \inlinematrix{\frac{1}{2} & -\frac{\i}{2k}\\ \frac{1}{2} & \frac{\i}{2k}} \inlinematrix{1 & 1 \\ q & -q} \inlinematrix{C & D}
|
||||||
\end{math}
|
\end{math}
|
||||||
|
|
||||||
|
\subsection*{c)}
|
||||||
$\inlinematrix{C & D}$ eingesetzt ergibt:
|
$\inlinematrix{C & D}$ eingesetzt ergibt:
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\tilde{E} &= \frac{2 k a}{e^{ika} \sbk{(q^2 - k^2) \cdot \i sinh(q \cdot a) - 2 k q cosh(qa)}} \\ % ist das richtig?
|
\tilde{E} &= \frac{2 k a}{e^{ika} \sbk{(q^2 - k^2) \cdot \i sinh(q \cdot a) - 2 k q cosh(qa)}} \\ % ist das richtig?
|
||||||
@ -82,10 +83,49 @@ $\inlinematrix{C & D}$ eingesetzt ergibt:
|
|||||||
T &= \frac{1}{\sbk{\frac{a^2 - k^2}{2 q k}} \cdot 2 sinh^2(q a) + cosh^2(q a)}
|
T &= \frac{1}{\sbk{\frac{a^2 - k^2}{2 q k}} \cdot 2 sinh^2(q a) + cosh^2(q a)}
|
||||||
\end{align}
|
\end{align}
|
||||||
|
|
||||||
\subsection*{c)}
|
|
||||||
|
|
||||||
\section{Aufgabe 19: Doppeltes Delta-Potential}
|
\section{Aufgabe 19: Doppeltes Delta-Potential}
|
||||||
|
$V(x) = - \frac{\hbar^2}{m} \kappa_0 \sbk{\delta\sbk{x -a} + \delta\sbk{x + a}}$
|
||||||
|
$E<0$
|
||||||
|
$\sbk{-\frac{\hbar^2}{2 m} \diffPs{x}^2 - \frac{\hbar^2}{m} \kappa_0 \sbk{\delta\sbk{x - a} + \delta\sbk{x + a}}} \Phi(x) = E \Phi(x)$
|
||||||
|
$\Phi'_I(-a) - \Phi'_{II}(-a) = - 2 \kappa_0 \Phi_I(-a)$
|
||||||
|
Mit $k^2 = \frac{-2 m E}{\hbar^2}$
|
||||||
|
Für I:
|
||||||
|
\begin{align}
|
||||||
|
\psi_I &= A e^{k x} \\
|
||||||
|
\psi_{II} &= B e^{-k x} + c e^{k x} \\
|
||||||
|
\psi_{III} &= D e^{-k x} \\
|
||||||
|
\abs{A} &= \abs{D} \\
|
||||||
|
A &= \pm D \\
|
||||||
|
B &= \pm C \\
|
||||||
|
0 &= B e^{2 k a} - C + A \sbk{1 - 2 \frac{k_0}{k}} \\
|
||||||
|
0 &= C e^{2 k a} - B + D \sbk{1 - 2 \frac{k_0}{k}} \\
|
||||||
|
\frac{k_0}{k} \sbk{e^{- 2 k a} \pm 1} &= \pm 1 \\
|
||||||
|
e^{-2 k a} &= \frac{k}{k_0} - 1 \\
|
||||||
|
e^{-2 k a} &= -\frac{k}{k_0} + 1 \\
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
%grafik einfügen
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
\kappa_0 &= 1 \\
|
||||||
|
\kappa_1 &= 1,11 \\
|
||||||
|
\kappa_2 &= 0,80 \\
|
||||||
|
E &= -\frac{k^2 \hbar^2}{2 m}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
|
||||||
\subsection*{a)}
|
\subsection*{a)}
|
||||||
|
|
||||||
\subsection*{b)}
|
\subsection*{b)}
|
||||||
|
$k_0 a \gg 1$ $\Rightarrow$ $\kappa \approx \kappa_0$
|
||||||
|
$k_\pm = k_0 \sbk{1 \pm e^{-2 \kappa_0 a}}$
|
||||||
\subsection*{c)}
|
\subsection*{c)}
|
||||||
\subsection*{d)}
|
$a \rightarrow 0$
|
||||||
|
\begin{align}
|
||||||
|
\kappa_+ &\approx \kappa_0 \sbk{1 + 1 - 2k + a} \\
|
||||||
|
&\approx 2 \kappa_0
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user