übungsblatt 3

This commit is contained in:
Daniel Bahrdt 2008-07-10 11:48:41 +02:00
parent 87d8942a0a
commit d0bbc04811
1 changed files with 96 additions and 1 deletions

View File

@ -2,14 +2,109 @@
%\pagebreak
\chapter{Quantenmechanik I - Übungsblatt 3}
Zugehörige Voraussetzungen:
Operatoren
Wahrscheinlichkeiten
\section{Aufgabe 7: Eigenzustände und Erwartungswerte von Spin-1/2-Teilchen}
$\vec{n}(\theta,\Phi) = \inlinematrix{\sin(\theta) \cos(\Phi) \\ \sin(\theta) \sin(\Phi) \\ \cos(\Phi)}$ \\
Präparation in $\ket{n_1+} \vec{n_1} = \vec{n}(\frac{\pi}{4},\frac{\pi}{4})$ \\
$\Rightarrow$ \\
$\vec{n_1} = \inlinematrix{\cos(\frac{\pi}{4} \\ 1 \\ \cos(\frac{\pi}{4}}$
$\ket{n_1} = \inlinematrix{\cos(\frac{\Thea}{2}) \\ e^{\i \phi} \sin(\frac{\Theta}{2}}$
\subsection*{a)}
$\vec{n_2} = \vec{n}(\frac{3\pi}{4},\phi)$
\begin{align}
p_+(\phi) &= \probb{\sigma_{n_2 \cequiv +1}{\ket{n_1+}}} \\
&= \abs{\braket{n_2+}{n_1+}}^2 \\
&= \frac{1}{4} \sbk{1 + \cos(\phi+\frac{\pi}{4})} \\
p_-(\phi) &= 1 - p_+ \\
&= 1 - \frac{1}{4} \sbk{1 + \cos(\phi+\frac{\pi}{4})} \\
&= \frac{3}{4} - \frac{1}{4} \cos(\phi+\frac{\pi}{4}) \\
&= \frac{1}{4} \sbk{3 - \cos(\phi+\frac{\pi}{4})}
\ket{n_1+} &= c_1 \ket{n_2+} + c_2 \ket{n_2-}
\end{align}
\subsection*{b)}
\begin{align}
\expval{şigma_z}_{\ket{n_1+}} &= \probb{\sigma_z \cequiv +1}{\ket{n_1+}} +
(-1) \probb{\sigma_z \cequiv -1}{\ket{n_1+}} \\ \\
&= \abs{\inlinematrix{1 & 0} \inlinematrix{\cos(\frac{\pi}{8} \\ e^{\i \frac{\pi}{4}}}}^2 -
\abs{\inlinematrix{0 & -1} \inlinematrix{\cos(\frac{\pi}{8} \\ e^{\i \frac{\pi}{4}}}}^2 \\
&= \cos^2(\frac{\pi}{8}) - \sin^2(\frac{\pi}{8}) \\
&= \cos(\frac{\pi}{4} \\
&= \frac{\sqrt{2}}{2} \\
\sbk{\Delta \sigma_x}^2 &= \prob{\sigma_x^2} - \prob{\sigma_x}^2 \\
\dirac{n_1+}{\sigma_x}{n_1+} &= \sin(\frac{\pi}{4} \cos(\frac{\pi}{4} &= \frac{1}{2} \\
\dirac{n_1+}{\sigma_x^2}{n_1+} &= \inlinematrix{\cos(\frac{\pi}{8}) & e^{-\frac{\pi}{4}} \sin(\frac{\pi}{8})} \cdot
\inlinematrix{1 & 0 \\ 1 & 0} \cdot
\inlinematrix{\cos(\frac{\pi}{8}) \\ e^{\frac{\pi}{4}} \sin(\frac{\pi}{8})} \\
&\Rightarrow
\sbk{\Delta \sigma_x}^2 &= 1 - \frac{1}{2}^2 \\
&= \frac{3}{4} \\
&\stackrel{analog}{=} \sbk{\Delta \sigma_y}^2 \\
\sbk{\Delta \sigma_x} \cdot \sbk{\Delta \sigma_y} &= \frac{3}{4} \\
\sbk{\Delta A} \cdot \sbk{\Delta B} &\geq \frac{1}{2} \abs{\expval{\frac{1}{\i} [A,B]}} \\
\frac{1}{2} \abs{\expval{\sigma_z}} &= \frac{1}{\sqrt{2}} &\< \frac{3}{4}
\end{align}
\subsection*{c)}
\begin{align}
\ket{\Psi} &= N (\ket{Z+} + e^{\i \alpha} \ket{Z-}) = N \inlinematrix{1 \\ e^{\i \alpha}} \\
\braket{\Psi}{\Psi} &= 1 \\
N^2 \sbk{1 + e^{\i \alpha - \i \alpha)}} &\deq 1 \\
&\Rightarrow \\
N &= \frac{1}{\sqrt{2}} \\ \\
P_+ &= \abs{\braket{x+}{\Psi}}^2 \\
&= \abs{\frac{1}{\sqrt{2}} \inlinematrix{1 \\ 1} \cdot \frac{1}{\sqrt{2}} \inlinematrix{1 \\ e^{\i \alpha}}}^2 \\
&= \frac{1}{4} \abs{1 + e^{\i \alpha}}^2 \\
&= \frac{1}{2} \sbk{1 + \cos(\alpha)}
\end{align}
\section{Aufgabe 8: Teilchen mit Spin 1}
\subsection*{a)}
\includegraphics{grafiken/U_A6_a.pdf}
\subsection*{b)}
$[\Epsilon_\alpha, \Epsilon_\beta] = \i \Epsilon_{\alpha, \beta, \gamma} \Epsilon_\gamma$
mit allen $\Sigma_{x,y,z}$ durch testen.
\subsection*{c)}
\begin{align}
\Sigma_^2 &= \Sigma_x^2 + \Sigma_y^2 + \Sigma_z^2 \\
&= 2 \one
\end{align}
\subsection*{d)}
\subsection*{e)}
\begin{math}
\ket{x+}, \ket{x-}, \ket{x0}, \ket{\Psi} = \ket{n_0}, n(\Theta,\Phi)
\end{math}
\begin{align}
p_0 &\Rightarrow &\ket{x0} &= \frac{1}{\sqrt{2}} \cdot \inlinematrix{1 \\ 0 \\ -1} \\
p_+ &\Rightarrow &\ket{x+} &= \frac{1}{2} \cdot \inlinematrix{1 \\ \frac{1}{\sqrt{2}} \\ 1} \\
p_- &\Rightarrow &\ket{x-} &= \frac{1}{2} \cdot \inlinematrix{-1 \\ \frac{1}{\sqrt{2}} \\ -1}
\vec{\Sigma_n} &= &\Sigma \cdot \vev{n} &= \inlinematrix{\cos(\Theta) & \frac{1}{\sqrt{2}} \sin(\Theta) e^{-\ \phi} & 0 \\
\frac{1}{\sqrt{2}} \sin(\Phi) e^{\i \phi} & 0 & \frac{1}{\sqrt{2}} \sin(\Theta) e^{-\i \phi} \\
0 & \frac{1}{\sqrt{2}} \sin(\Theta) e^{\i \phi} & \cos(\Theta)}
&\Rightarrow
\ket{n_0} & & &= \frac{1}\sqrt{2}} \inlinematrix{-\sin(\Theta) e^{\i \Phi} \\ \sqrt{2} \cos(\Theta) \\ \sin(\Theta) e^{\i \Phi}} \\
\end{align}
\begin{align}
p_+ &= \abs{\braket{x_1}{n_0}}^2 &= \ldots \frac{1}{2} \cos^2(\Theta) + \frac{1}{2} \sin^2(\Theta) \sin^2(\Phi) = p_- \\
p_0 &= 1- 2 p_+ &= 1 - 2 p_-
\end{align}
\subsection*{e)}
\begin{align}
\expval{\Sigma_x}_{\ket{\Psi}} &= \dirac{n_0}{\Sigma_x}{n_0} \\
&= +1 + 1 p_+ + p_0 + (-1) p_- \\
&= 0 \\
\ket{\Psi} &= c_1 \ket{\x+} + c_2 \ket{x-} + c_3 \ket{x0} \\
\sbk{\Delta \Epsilon_x}^2 &= \langle \Sigma_x^2 \rangle - {\langle \Sigma_x \rangle}^2 \\
&= c_2 \inlinematrix{1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1} %ist das richtig?
\dirac{\Psi}{\Sigma_x^2}{\Psi} &= c_1^2 \cdot 1^2 + c_2^2 \cdot (-1)^2 + c_3^2 \cdot 0^2 \\
&\stackrel{c_1 = c_2}{=} 2 c_1^2 \\
&= \cos^2(\Theta) + \sin^2(\Theta) \cdot \sin^2(\phi) %Ist das richtig?
\end{align}