zeug
This commit is contained in:
parent
67f5a22e38
commit
d3ce4ae81e
36
kapIV-2.tex
36
kapIV-2.tex
@ -7,7 +7,7 @@ gegeben:
|
||||
\end{equation}
|
||||
suche:
|
||||
\begin{equation}
|
||||
\left( H - E_a \right) \ket{a} = 0 \label{stern00}
|
||||
\left( H - E_a \right) \ket{a} = 0 \label{stern01}
|
||||
\end{equation}
|
||||
mit $\ket{a} \rightarrow \ket{\alpha}$ (für $x \rightarrow 0$) eindeutig, da nicht entartet.
|
||||
\paragraph{Strategie} Wir entwickeln nach $\lambda$
|
||||
@ -19,7 +19,7 @@ Norm:
|
||||
\abs{c_\alpha}^2 + \sum_{\beta \neq \alpha} \abs{d_\beta}^2 &= 1\\
|
||||
\rightarrow c_\alpha &= 1 - O(\lambda^2)
|
||||
\end{align}
|
||||
einsetzen in (\ref{stern00}):
|
||||
einsetzen in (\ref{stern01}):
|
||||
\begin{align}
|
||||
0 &= \left( H - E_\alpha \right) \ket{\alpha}\\
|
||||
0 &= \left( H_0 - \lambda H_1 - E_\alpha \right) \left( c_\alpha \ket{\alpha} + \sum_{\beta \neq \alpha} d_\beta \ket{\beta} \right) &\left| \bra{\gamma} ~ \gamma \neq \alpha \right.\\
|
||||
@ -60,20 +60,20 @@ entsprechend
|
||||
\begin{equation}
|
||||
E_0 = \hbar \omega \left( n + \frac{1}{2} \right) + \lambda \dirac{n}{x^4}{n}
|
||||
\end{equation}
|
||||
%\begin{figure}[H] \centering
|
||||
%\includegraphics{pdf/III/02-01-00.pdf}
|
||||
%\end{figure}
|
||||
\begin{figure}[H] \centering
|
||||
\includegraphics{pdf/IV/02-01-00.pdf}
|
||||
\end{figure}
|
||||
Konsequenz?
|
||||
\begin{itemize}
|
||||
\item für $\lambda$ negativ $\abs{\lambda} \ll 1$
|
||||
%\begin{figure}[H] \centering
|
||||
%\includegraphics{pdf/III/02-01-01.pdf}
|
||||
%\caption{gestrichelte Kurve entspricht $\frac{m}{2} \omega x^2 \abs{\lambda} x^4$}
|
||||
%\end{figure}
|
||||
\begin{figure}[H] \centering
|
||||
\includegraphics{pdf/IV/02-01-01.pdf}
|
||||
\caption{gestrichelte Kurve entspricht $\frac{m}{2} \omega x^2 \abs{\lambda} x^4$}
|
||||
\end{figure}
|
||||
\item für $\lambda$ positiv
|
||||
%\begin{figure}[H] \centering
|
||||
%\includegraphics{pdf/III/02-01-02.pdf}
|
||||
%\end{figure}
|
||||
\begin{figure}[H] \centering
|
||||
\includegraphics{pdf/IV/02-01-02.pdf}
|
||||
\end{figure}
|
||||
\end{itemize}
|
||||
volle Rechnung zeigt:
|
||||
\begin{equation}
|
||||
@ -89,9 +89,9 @@ mit
|
||||
\item Obige Formel wegen Energienenner nicht anwendbar bei Entartung.
|
||||
\item sehr relevant: Aufhebeung der Entartung durch Störung
|
||||
\end{itemize}
|
||||
%\begin{figure}[H] \centering
|
||||
%\includegraphics{pdf/III/02-02-00.pdf}
|
||||
%\end{figure}
|
||||
\begin{figure}[H] \centering
|
||||
\includegraphics{pdf/IV/02-02-00.pdf}
|
||||
\end{figure}
|
||||
\paragraph{Ansatz}
|
||||
\begin{align}
|
||||
\ket{a} &= \sum_{\alpha \in D} c_\alpha \ket{\alpha} + \sum_{\mu \notin D} d_\mu \ket{\mu}\\[10pt]
|
||||
@ -139,9 +139,9 @@ Störung: $H_1$ sei E'feld
|
||||
\end{equation}
|
||||
\begin{itemize}
|
||||
\item in Ordnung $\lambda$ d.h. in $O(\abs{E})$:
|
||||
% \begin{equation}
|
||||
% \dirac{1,0,0}{H_1}{1,0,0} = \intgru{\Phi^*_{1,0,0} (\vec{r}) \cdor e \abs{E} z \Phi_{1,0,0}(\vec{r})}{r^3} = 0
|
||||
% \end{equation}
|
||||
\begin{equation}
|
||||
\dirac{1,0,0}{H_1}{1,0,0} = \intgru{\Phi^*_{1,0,0} (\vec{r}) \cdot e \abs{E} \hat{z} \Phi_{1,0,0}(\vec{r})}{r^3} = 0
|
||||
\end{equation}
|
||||
\item in Ordnung $\abs{E}^2$:
|
||||
\begin{align}
|
||||
E_a = E_\alpha + ... &= E_1 + \sum_{\beta,\alpha} \frac{\abs{\dirac{\beta}{H_1}{\alpha}}^2}{E_\beta - E_\alpha}\\
|
||||
|
Loading…
Reference in New Issue
Block a user