This commit is contained in:
Oliver Groß 2010-12-13 16:23:12 +01:00
parent 67f5a22e38
commit d3ce4ae81e

View File

@ -7,7 +7,7 @@ gegeben:
\end{equation} \end{equation}
suche: suche:
\begin{equation} \begin{equation}
\left( H - E_a \right) \ket{a} = 0 \label{stern00} \left( H - E_a \right) \ket{a} = 0 \label{stern01}
\end{equation} \end{equation}
mit $\ket{a} \rightarrow \ket{\alpha}$ (für $x \rightarrow 0$) eindeutig, da nicht entartet. mit $\ket{a} \rightarrow \ket{\alpha}$ (für $x \rightarrow 0$) eindeutig, da nicht entartet.
\paragraph{Strategie} Wir entwickeln nach $\lambda$ \paragraph{Strategie} Wir entwickeln nach $\lambda$
@ -19,7 +19,7 @@ Norm:
\abs{c_\alpha}^2 + \sum_{\beta \neq \alpha} \abs{d_\beta}^2 &= 1\\ \abs{c_\alpha}^2 + \sum_{\beta \neq \alpha} \abs{d_\beta}^2 &= 1\\
\rightarrow c_\alpha &= 1 - O(\lambda^2) \rightarrow c_\alpha &= 1 - O(\lambda^2)
\end{align} \end{align}
einsetzen in (\ref{stern00}): einsetzen in (\ref{stern01}):
\begin{align} \begin{align}
0 &= \left( H - E_\alpha \right) \ket{\alpha}\\ 0 &= \left( H - E_\alpha \right) \ket{\alpha}\\
0 &= \left( H_0 - \lambda H_1 - E_\alpha \right) \left( c_\alpha \ket{\alpha} + \sum_{\beta \neq \alpha} d_\beta \ket{\beta} \right) &\left| \bra{\gamma} ~ \gamma \neq \alpha \right.\\ 0 &= \left( H_0 - \lambda H_1 - E_\alpha \right) \left( c_\alpha \ket{\alpha} + \sum_{\beta \neq \alpha} d_\beta \ket{\beta} \right) &\left| \bra{\gamma} ~ \gamma \neq \alpha \right.\\
@ -60,20 +60,20 @@ entsprechend
\begin{equation} \begin{equation}
E_0 = \hbar \omega \left( n + \frac{1}{2} \right) + \lambda \dirac{n}{x^4}{n} E_0 = \hbar \omega \left( n + \frac{1}{2} \right) + \lambda \dirac{n}{x^4}{n}
\end{equation} \end{equation}
%\begin{figure}[H] \centering \begin{figure}[H] \centering
%\includegraphics{pdf/III/02-01-00.pdf} \includegraphics{pdf/IV/02-01-00.pdf}
%\end{figure} \end{figure}
Konsequenz? Konsequenz?
\begin{itemize} \begin{itemize}
\item für $\lambda$ negativ $\abs{\lambda} \ll 1$ \item für $\lambda$ negativ $\abs{\lambda} \ll 1$
%\begin{figure}[H] \centering \begin{figure}[H] \centering
%\includegraphics{pdf/III/02-01-01.pdf} \includegraphics{pdf/IV/02-01-01.pdf}
%\caption{gestrichelte Kurve entspricht $\frac{m}{2} \omega x^2 \abs{\lambda} x^4$} \caption{gestrichelte Kurve entspricht $\frac{m}{2} \omega x^2 \abs{\lambda} x^4$}
%\end{figure} \end{figure}
\item für $\lambda$ positiv \item für $\lambda$ positiv
%\begin{figure}[H] \centering \begin{figure}[H] \centering
%\includegraphics{pdf/III/02-01-02.pdf} \includegraphics{pdf/IV/02-01-02.pdf}
%\end{figure} \end{figure}
\end{itemize} \end{itemize}
volle Rechnung zeigt: volle Rechnung zeigt:
\begin{equation} \begin{equation}
@ -89,9 +89,9 @@ mit
\item Obige Formel wegen Energienenner nicht anwendbar bei Entartung. \item Obige Formel wegen Energienenner nicht anwendbar bei Entartung.
\item sehr relevant: Aufhebeung der Entartung durch Störung \item sehr relevant: Aufhebeung der Entartung durch Störung
\end{itemize} \end{itemize}
%\begin{figure}[H] \centering \begin{figure}[H] \centering
%\includegraphics{pdf/III/02-02-00.pdf} \includegraphics{pdf/IV/02-02-00.pdf}
%\end{figure} \end{figure}
\paragraph{Ansatz} \paragraph{Ansatz}
\begin{align} \begin{align}
\ket{a} &= \sum_{\alpha \in D} c_\alpha \ket{\alpha} + \sum_{\mu \notin D} d_\mu \ket{\mu}\\[10pt] \ket{a} &= \sum_{\alpha \in D} c_\alpha \ket{\alpha} + \sum_{\mu \notin D} d_\mu \ket{\mu}\\[10pt]
@ -139,9 +139,9 @@ Störung: $H_1$ sei E'feld
\end{equation} \end{equation}
\begin{itemize} \begin{itemize}
\item in Ordnung $\lambda$ d.h. in $O(\abs{E})$: \item in Ordnung $\lambda$ d.h. in $O(\abs{E})$:
% \begin{equation} \begin{equation}
% \dirac{1,0,0}{H_1}{1,0,0} = \intgru{\Phi^*_{1,0,0} (\vec{r}) \cdor e \abs{E} z \Phi_{1,0,0}(\vec{r})}{r^3} = 0 \dirac{1,0,0}{H_1}{1,0,0} = \intgru{\Phi^*_{1,0,0} (\vec{r}) \cdot e \abs{E} \hat{z} \Phi_{1,0,0}(\vec{r})}{r^3} = 0
% \end{equation} \end{equation}
\item in Ordnung $\abs{E}^2$: \item in Ordnung $\abs{E}^2$:
\begin{align} \begin{align}
E_a = E_\alpha + ... &= E_1 + \sum_{\beta,\alpha} \frac{\abs{\dirac{\beta}{H_1}{\alpha}}^2}{E_\beta - E_\alpha}\\ E_a = E_\alpha + ... &= E_1 + \sum_{\beta,\alpha} \frac{\abs{\dirac{\beta}{H_1}{\alpha}}^2}{E_\beta - E_\alpha}\\