%\includegraphics{excs/qm1_blatt03_SS08.pdf} %\pagebreak \chapter{Quantenmechanik I - Übungsblatt 3} Zugehörige Voraussetzungen: Operatoren Wahrscheinlichkeiten \section{Aufgabe 7: Eigenzustände und Erwartungswerte von Spin-1/2-Teilchen} $\vec{n}(\theta,\Phi) = \inlinematrix{\sin(\theta) \cos(\Phi) \\ \sin(\theta) \sin(\Phi) \\ \cos(\Phi)}$ \\ Präparation in $\ket{n_1+} \vec{n_1} = \vec{n}\sbk{\frac{\pi}{4},\frac{\pi}{4}}$ \\ $\Rightarrow$ \\ $\vec{n_1} = \inlinematrix{\cosb{\frac{\pi}{4}} \\ 1 \\ \cosb{\frac{\pi}{4}}}$ $\ket{n_1} = \inlinematrix{\cosb{\frac{\Theta}{2}} \\ e^{\i \phi} \sinb{\frac{\Theta}{2}}}$ \subsection*{a)} $\vec{n_2} = \vec{n}\sbk{\frac{3\pi}{4},\phi}$ \begin{align} p_+\sbk{\phi} &= \probb{\sigma_{n_2} \cequiv +1}{\ket{n_1+}} \\ &= \abs{\braket{n_2+}{n_1+}}^2 \\ &= \frac{1}{4} \sbk{1 + \cosb{\phi+\frac{\pi}{4}}} \\ p_-\sbk{\phi} &= 1 - p_+ \\ &= 1 - \frac{1}{4} \sbk{1 + \cosb{\phi+\frac{\pi}{4}}} \\ &= \frac{3}{4} - \frac{1}{4} \cosb{\phi+\frac{\pi}{4}} \\ &= \frac{1}{4} \sbk{3 - \cosb{\phi+\frac{\pi}{4}}} \\ \ket{n_1+} &= c_1 \ket{n_2+} + c_2 \ket{n_2-} \end{align} \subsection*{b)} \begin{align} \expval{sigma_z}_{\ket{n_1+}} &= \probb{\sigma_z \cequiv +1}{\ket{n_1+}} + (-1) \probb{\sigma_z \cequiv -1}{\ket{n_1+}} \\ &= \abs{\inlinematrix{1 & 0} \inlinematrix{\cos(\frac{\pi}{8} \\ e^{\i \frac{\pi}{4}}}}^2 - \abs{\inlinematrix{0 & -1} \inlinematrix{\cos(\frac{\pi}{8} \\ e^{\i \frac{\pi}{4}}}}^2 \\ &= \cos^2(\frac{\pi}{8}) - \sin^2(\frac{\pi}{8}) \\ &= \cos(\frac{\pi}{4} \\ &= \frac{\sqrt{2}}{2} \\ \sbk{\Delta \sigma_x}^2 &= \prob{\sigma_x^2} - \prob{\sigma_x}^2 \\ \dirac{n_1+}{\sigma_x}{n_1+} &= \sin(\frac{\pi}{4} \cos(\frac{\pi}{4} &= \frac{1}{2} \\ \dirac{n_1+}{\sigma_x^2}{n_1+} &= \inlinematrix{\cos(\frac{\pi}{8}) & e^{-\frac{\pi}{4}} \sin(\frac{\pi}{8})} \cdot \inlinematrix{1 & 0 \\ 1 & 0} \cdot \inlinematrix{\cos(\frac{\pi}{8}) \\ e^{\frac{\pi}{4}} \sin(\frac{\pi}{8})} \\ &\Rightarrow \sbk{\Delta \sigma_x}^2 &= 1 - \frac{1}{2}^2 \\ &= \frac{3}{4} \\ &\stackrel{\text{analog}}{=} \sbk{\Delta \sigma_y}^2 \\ \sbk{\Delta \sigma_x} \cdot \sbk{\Delta \sigma_y} &= \frac{3}{4} \\ \sbk{\Delta A} \cdot \sbk{\Delta B} &\geq \frac{1}{2} \abs{\expval{\frac{1}{\i} [A,B]}} \\ \frac{1}{2} \abs{\expval{\sigma_z}} &= \frac{1}{\sqrt{2}} &< \frac{3}{4} \end{align} \subsection*{c)} \begin{align} \ket{\Psi} &= N (\ket{Z+} + e^{\i \alpha} \ket{Z-}) = N \inlinematrix{1 \\ e^{\i \alpha}} \\ \braket{\Psi}{\Psi} &= 1 \\ N^2 \sbk{1 + e^{\i \alpha - \i \alpha)}} &\deq 1 \\ &\Rightarrow \\ N &= \frac{1}{\sqrt{2}} \\ \\ P_+ &= \abs{\braket{x+}{\Psi}}^2 \\ &= \abs{\frac{1}{\sqrt{2}} \inlinematrix{1 \\ 1} \cdot \frac{1}{\sqrt{2}} \inlinematrix{1 \\ e^{\i \alpha}}}^2 \\ &= \frac{1}{4} \abs{1 + e^{\i \alpha}}^2 \\ &= \frac{1}{2} \sbk{1 + \cos(\alpha)} \end{align} \section{Aufgabe 8: Teilchen mit Spin 1} \subsection*{a)} \includegraphics{grafiken/U_A6_a.pdf} \subsection*{b)} $[\Sigma_\alpha, \Sigma_\beta] = \i \Sigma_{\alpha, \beta, \gamma} \Sigma_\gamma$ mit allen $\Sigma_{x,y,z}$ durch testen. \subsection*{c)} \begin{align} \Sigma^2 &= \Sigma_x^2 + \Sigma_y^2 + \Sigma_z^2 \\ &= 2 \one \end{align} \subsection*{d)} \begin{math} \ket{x+}, \ket{x-}, \ket{x0}, \ket{\Psi} = \ket{n_0}, n(\Theta,\Phi) \end{math} \begin{align} p_0 &\Rightarrow &\ket{x0} &= \frac{1}{\sqrt{2}} \cdot \inlinematrix{1 \\ 0 \\ -1} \\ p_+ &\Rightarrow &\ket{x+} &= \frac{1}{2} \cdot \inlinematrix{1 \\ \frac{1}{\sqrt{2}} \\ 1} \\ p_- &\Rightarrow &\ket{x-} &= \frac{1}{2} \cdot \inlinematrix{-1 \\ \frac{1}{\sqrt{2}} \\ -1} \vec{\Sigma_n} &= &\Sigma \cdot \vec{n} &= \inlinematrix{\cos(\Theta) & \frac{1}{\sqrt{2}} \sin(\Theta) e^{-\ \phi} & 0 \\ \frac{1}{\sqrt{2}} \sin(\Phi) e^{\i \phi} & 0 & \frac{1}{\sqrt{2}} \sin(\Theta) e^{-\i \phi} \\ 0 & \frac{1}{\sqrt{2}} \sin(\Theta) e^{\i \phi} & \cos(\Theta)} &\Rightarrow \ket{n_0} & & &= \frac{1}{\sqrt{2}} \inlinematrix{-\sin(\Theta) e^{\i \Phi} \\ \sqrt{2} \cos(\Theta) \\ \sin(\Theta) e^{\i \Phi}} \end{align} \begin{align} p_+ &= \abs{\braket{x_1}{n_0}}^2 &= \ldots \frac{1}{2} \cos^2(\Theta) + \frac{1}{2} \sin^2(\Theta) \sin^2(\Phi) = p_- \\ p_0 &= 1- 2 p_+ &= 1 - 2 p_- \end{align} \subsection*{e)} \begin{align} \expval{\Sigma_x}_{\ket{\Psi}} &= \dirac{n_0}{\Sigma_x}{n_0} \\ &= +1 + 1 p_+ + p_0 + (-1) p_- \\ &= 0 \\ \ket{\Psi} &= c_1 \ket{x+} + c_2 \ket{x-} + c_3 \ket{x0} \\ \sbk{\Delta \Sigma_x}^2 &= \langle \Sigma_x^2 \rangle - {\langle \Sigma_x \rangle}^2 \\ &= c_2 \inlinematrix{1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1} %ist das richtig? \dirac{\Psi}{\Sigma_x^2}{\Psi} &= c_1^2 \cdot 1^2 + c_2^2 \cdot (-1)^2 + c_3^2 \cdot 0^2 \\ &\stackrel{c_1 = c_2}{=} 2 c_1^2 \\ &= \cos^2(\Theta) + \sin^2(\Theta) \cdot \sin^2(\phi) %Ist das richtig? \end{align}