%\includegraphics{excs/qm1_blatt04_SS08.pdf} %\pagebreak \chapter{Quantenmechanik I - Übungsblatt 4} \section{Aufgabe 9: Zeitentwicklung eines allgemeinen Zweizustandssystems} \begin{math} H = \hbar \inlinematrix{A & B \\ B & -A} \\ A = \Omega \cosb{2 \theta} \\ B = \Omega \sinb{2 \theta} \\ E_\pm = \pm \hbar \Omega \end{math} \subsection*{a)} \begin{align} \ket{\chi_+} &= \inlinematrix{\sinb{2 \theta} \\ 1 - \cosb{2 \theta}} &= \inlinematrix{\cosb{\theta} \\ \sinb{\theta}} \\ \ket{\chi_-} &= &= \inlinematrix{\sinb{\theta} \\ -\cosb{\theta}} \end{align} \subsection*{b)} \begin{align} \i \hbar \diffPs{t} \ket{\psi} &= H \ket{\psi} \\ \ket{\dot{\psi}} &= -\i \Omega \inlinematrix{\cosb{2 \theta} & \sinb{2 \theta} \\ \sinb{2 \theta} & -\cosb{2 \theta}} \ket{\psi} \\ \ket{\psi(t)} &= c_1 \cdot e^{\i \Omega t} \ket{\chi+} + c_2 \cdot e^{-\i \Omega t} \ket{\chi-} \\ \ket{\psi(0)} &= \inlinematrix{\lambda \\ \mu} \\ \inlinematrix{c_+(t) \\ c_-(t)} &= \sbk{\lambda \cosb{\theta} + \mu \sinb{\theta}} \cdot \inlinematrix{\cosb{\theta} \\ \sinb{\theta}} \cdot e^{-\i t} + \sbk{\lambda \sinb{\theta} - \mu \cosb{\theta}} \cdot \inlinematrix{\sinb{\theta} \\ -\cosb{\theta}} \cdot e^{\i \Omega t} \end{align} \subsection*{c)} %hier stimmt evtl. was nicht \begin{align} \ket{\psi(0)} &= \inlinematrix{0 \\ 1} \\ \abs{\braket{+}{\psi(t)}}^2 &= \sin^2\sbk{\Omega t} \cdot \sin^2\sbk{2 \theta} \\ \abs{\braket{-}{\psi(t)}}^2 &= \cos^2\sbk{\Omega t} + \sin^2\sbk{\Omega t} \cdot \cos^2\sbk{2 \Omega} \end{align} \section{Aufgabe 10: Zerfall eines instabilen Zustandes} \subsection*{a)} \begin{align} _\psi &= \dirac{\psi(t)}{H}{\psi(t)} \\ &= \dirac{\Phi}{e^{\frac{\i H t}{\hbar}} H e^{\frac{-\i H t}{\hbar}}}{\Phi} \\ &mit [H,e^{H}] = 0 \\ &= \dirac{\Phi}{H \cdot e^{\frac{\i H t}{\hbar}} \cdot e^{\frac{-\i H t}{\hbar}} \cdot H}{\Phi} %error: 2 Hs wo nur eins? &= \dirac{\Phi}{H}{\Phi} \\ _\psi &= \dirac{\Phi}{H^2}{\Phi} analog \\ \varianz{H}{\psi}^2 &= \dirac{\Phi}{H^2}{\Phi} - \dirac{\Phi}{H}{\Phi}^2 \\ &\Rightarrow \text{zeitunabhängig} \\ \end{align} $p \deq p^2 = p \cdot p = \ket{\Phi} \underbrace{\bra{\Phi} \ket{\Phi}}_{=1} \bra{\Phi} = \ket{\Phi} \bra{\Phi} = p$ \subsection*{b)} \begin{align} p(t) &= 1 - \frac{\varianz{H}{}^2}{\hbar^2} \cdot t^2 + \bigOb{t^3} \\ &= \abs{\braket{\psi(t)}{\Phi}}^2 \\ &= \abs{\braket{\Phi}{\psi(t)}}^2 - \abs{\dirac{\Phi}{e^{-\frac{\i H t}{\hbar}}}{\Phi}}^2 &\left| Taylor \right. \\ &= \abs{\braket{\Phi}{\Phi} + \dirac{\Phi}{-\frac{\i H t}{\hbar}}{\Phi} + \dirac{\Phi}{\frac{1}{2} \cdot \sbk{-\frac{\i H t}{\hbar}}^2}{\Phi}}^2 + \bigOb{t^3} \\ &= \abs{1 - \frac{\i t}{\hbar} \dirac{\Phi}{H}{\Phi} - \frac{t^2}{2 \hbar} \dirac{\Phi}{H^2}{\Phi}}^2 \\ &= \sbk{1 - \frac{\i t}{\hbar} \ssbk{H}_\psi - \frac{t^2}{2 \hbar} \ssbk{H^2}_\psi} \cdot \sbk{1 + \frac{\i t}{\hbar} \ssbk{H}_\psi - \frac{t^2}{2 \hbar} \ssbk{H^2}_\psi} + \bigOb{t^3} \\ &= 1 - \frac{H}{\hbar} t^2 + \bigOb{t^3} \end{align} \subsection*{c)} \begin{align} \diffT{t} \ssbk{0} &= \frac{\i}{\hbar} \ssbk{[H,0]} + \ssbk{\diffPfrac{0}{t}} \abs{\diffTfrac{p}{t}} &= \abs{\diffT{t} \ssbk{p}} \\ &= \abs{\frac{\i}{\hbar} \ssbk{[H,p]} + \ssbk{\underbrace{\diffPfrac{p}{t}}_{=0}}} \\ &= \frac{1}{\hbar} \abs{[H,p]} \\ &\leq \frac{2}{\hbar} \Delta H \Delta p \\ &= \frac{2}{\hbar} \Delta H \sqrt{\ssbk{p^2} - \ssbk{p}^2} \\ \abs{\diffTfrac{p}{t}} &= \frac{2}{\hbar} \Delta H \sqrt{p (1 - p)} \end{align} \begin{align} p_0(0) &= 1 \\ \diffTfrac{p_0(t)}{t} &\leq 0 \\ -\diffTfrac{p_0}{t} &= \frac{2 \Delta H}{\hbar} \sqrt{p_0(t) (1 - p_0(t))} \\ \frac{\text{d}p_0}{\sqrt{p_0 (1 - p_0)}} &= -\frac{2 \Delta H}{\hbar} \text{d}t &\left| \text{Integral drüber} \right. \\ \intgr{1}{p_0}{\frac{\text{d}p'_0}{\sqrt{p'_0 (1 - p'_0)}}}{p'} &= -\frac{2 \Delta H}{\hbar} \intgr{0}{t}{}{t'} \\ \arcsinb{2 p_0(t) -1} &= -\frac{2 \Delta H}{\hbar} t + c \\ p_0(t) &= \frac{1}{2} \sinb{-\frac{2 \Delta H}{\hbar} t + c} + \frac{1}{2} %fehler bei 1/2? &= \frac{1}{2} \sbk{1 + \cosb{\frac{2 \Delta H}{\hbar} t}} \\ &= \cos^2\sbk{\frac{\Delta H}{\hbar} t} \\ &\text{fuer} 0 \leq t \leq \frac{\pi \hbar}{2 \Delta H} \text{gilt:} p(t) &\geq \cos^2\sbk{\frac{\Delta H}{\hbar} t} \end{align} \subsection*{d)} $h \ket{n} = E_n \ket{n}$ \\ $w(E) = \sum_n \abs{\braket{n}{\Phi}}^2 \delta\sbk{E - E_n}$ \begin{align} c(t) &= \intgrinf{e^{-\frac{\i E}{\hbar}t} \cdot w(E)}{E} \\ &= \braket{\Phi}{\psi(t)} \\ &= \dirac{\Phi}{e^{-\frac{\i H}{\hbar}t}}{\Phi} &\left| \ket{\Phi} = \sum_n a_n \ket{n} \right. \\ &= \dirac{\Phi}{\sum_n a_n e^{-\frac{\i E_n}{\hbar}t}}{n} \\ &= \sum_m a_m^\ast \sum_n e^{-\frac{\i E}{\hbar} t} \braket{m}{n} a_n \\ \sum_n \abs{a_n}^2 e^{-\frac{\i E_n t}{\hbar}} \end{align} \subsection*{e)} \begin{align} w(E) &= \frac{\Gamma}{2 \pi} \cdot \frac{1}{\sbk{E - E_n}^2 + \hbar^2 \frac{\Gamma^2}{4}} \\ c(t) &= \frac{\Gamma \hbar}{2 \pi} \intgrinf{\frac{e^{\frac{\i E}{\hbar}t}}{\sbk{E - E_n}^2 + \hbar^2 \frac{\Gamma^2}{4}}}{E} \\ & \text{mit} Z = \frac{2 \sbk{E - E_n}}{\hbar \Gamma} \\ &= \frac{1}{\pi} \intgrinf{\frac{e{-\frac{\i}{\hbar}t \sbk{\frac{\hbar \Gamma Z}{2} + E_0}}}{1 + Z^2}}{Z} \\ &= e^{-\frac{\i E_0}{\hbar}t} \frac{1}{\pi} \intgrinf{\frac{e^{-\frac{\i \Gamma}{2} + Z}}{1 + Z^2}}{Z} \\ &\text{Residuensatz} \\ &= e^{-\frac{\i E_0}{\hbar}t} \frac{1}{\pi} \cdot - 2 \pi \i e^{-\frac{\Gamma}{2}t} \frac{1}{-2 \i} \\ &= e^{-\frac{\i E_0}{\hbar}t} \cdot e^{-\frac{\Gamma}{2}t} \\ p(t) &= e^{-\Gamma t} \end{align} \subsection*{f)} \begin{align} \probb{H \cequiv E_n}{\ket{\psi(t)}} &= \abs{\braket{n}{\Phi}}^2 \\ w(E) &= \sum_n \abs{\braket{n}{\Phi}}^2 \delta\sbk{E - E_n} \\ \end{align} (13) Gilt, da diese Def. vom Erwartungswert von $w(E)$ sind (Teile davon) %HÄ? \begin{align} \ssbk{H^\alpha} &= \frac{\Gamma \hbar}{2 \pi} \intgrinf{\frac{E^\alpha}{\sbk{E - E_0}^2 + \hbar^2 \frac{\Gamma^2}{4}}}{E} \\ &= \frac{2}{\pi \hbar \Gamma} \intgrinf{\frac{E^\alpha}{1 + \sbk{\frac{2 \sbk{E - E_0}}{\hbar \Gamma}}^2}}{E} \\ & \text{mit} Z = \frac{2 \sbk{E - E_n}}{\hbar \Gamma} \\ \\ &= \frac{1}{\pi} \intgrinf{\frac{\sbk{\frac{\hbar \Gamma Z}{2} + E_0}^\alpha}{\sbk{1 + Z^2}}}{Z} \\ \end{align} Für $\alpha = 1$ \begin{align} \ssbk{H} &= \frac{1}{\pi} \intgrinf{\frac{\sbk{\frac{\hbar \Gamma Z}{2} + E_0}}{\sbk{1 + Z^2}}}{Z} \\ &= \intgrinf{\frac{\hbar \Gamma Z}{2 \sbk{1 + Z^2}}}{Z} + \underbrace{\frac{E_0}{\hbar} \underbrace{\intgrinf{\frac{1}{1 + Z^2}}{Z}}_{=\pi}}_{E_0} \end{align} Für $\alpha = 2$ \begin{align} \ssbk{H^2} &\approx \intgrinf{\frac{Z^2}{1 + Z^2}}{Z} \end{align} $\ssbk{H^2}$ ist aber nicht definiert \\ $\Rightarrow$ Unschärfe nicht definiert \\ $\Rightarrow$ Annahme endl. Unschärfe falsch