54 lines
2.2 KiB
TeX
54 lines
2.2 KiB
TeX
\chapter{Variationsrechnung}
|
|
\paragraph{Satz} Für nichtnormiertes $\ket{\psi} \in \hilbert$ gilt
|
|
\begin{equation}
|
|
\overline{H} = \frac{\dirac{\psi}{H}{\psi}}{\braket{\psi}{\psi}} \geq E
|
|
\end{equation}
|
|
|
|
\subparagraph{Beweis} $\ket{\psi}$ entwickeln:
|
|
\begin{equation}
|
|
\ket{\psi} = \sum_n a_n \ket{n}
|
|
\end{equation}
|
|
mit $H\ket{n} = E_n\ket{n}$
|
|
\begin{equation}
|
|
\overline{H} = \frac{\sum_{n=0}^N E_n \abs{\braket{n}{\psi}}^2}{\sum_{n=0}^N \abs{\braket{n}{\psi}}^2} = \frac{\sum_{n=0}^N \abs{\braket{n}{\psi}}^2 (E_n-E_0) + \sum_{n=0}^N E_0 \abs{\braket{n}{\psi}}^2}{\sum_{n=0}^N \abs{\braket{n}{\psi}}^2} \geq E_0
|
|
\end{equation}
|
|
|
|
\paragraph{Strategie} Parametrisieren von $\ket{\psi}$ mit Variationsparameter $\set{\alpha_i}$:
|
|
\begin{align}
|
|
\ket{\psi} = \ket{\psi \set{\alpha_i}}\\[15pt]
|
|
\rightarrow \overline{H} = \overline{H} \left( \set{\alpha_i} \right)
|
|
\end{align}
|
|
und das Minimum suchen:
|
|
\begin{equation}
|
|
\diffPfrac{\overline{H}}{\alpha_i} \stackrel{!}{=} 0 \rightarrow \set{alpha_i^*}
|
|
\end{equation}
|
|
optimale Abschätzung:
|
|
\begin{equation}
|
|
\overline{H}\left(\set{\alpha_i^*}\right) \geq E_0
|
|
\end{equation}
|
|
Falls $\ket{\psi}$ nur wenig von $\ket{0}$ abweicht
|
|
\begin{align}
|
|
\ket{\psi} &= \ket{0} + \varepsilon \ket{\phi} \\
|
|
\overline{H} &= E_0 + O(\varepsilon^2)
|
|
\end{align}
|
|
ist die Abschätzung der Energie besser als Näherung an $\ket{0}$.
|
|
|
|
\paragraph{Beispiel}
|
|
%\begin{figure}[H] \centering
|
|
%\includegraphics{pdf/III/01-00-00.pdf}
|
|
%\end{figure}
|
|
\begin{align}
|
|
\braket{x}{0} &= \frac{1}{\sqrt{a}} \cos\left(\frac{\pi}{2a}x\right)
|
|
\end{align}
|
|
Variationsansatz:
|
|
\begin{align}
|
|
\psi(\alpha,x) &= \abs{a}^{alpha_1} - \abs{x}^{\alpha_1}\\[15pt]
|
|
\overline{H} &= \frac{\hbar^2}{2m} \intgr{-a}{+a}{\psi(\alpha,x)\psi(\alpha,x)}{x} \left( \intgr{-a}{+a}{\abs{\psi(x)}^2}{x} \right)^-1\\
|
|
&= \frac{\hbar^2}{2m} \frac{1}{4a^2} \frac{(2\alpha_1 + 2)(2\alpha_1 + 1)}{(2\alpha_1 - 1)}
|
|
\end{align}
|
|
für $\diffPs{\alpha}\overline{H} = 0$ erhält man
|
|
\begin{equation}
|
|
\alpha_1^* = \frac{1+\sqrt{6}}{2} \approx 1,72 \text{ und } \overline{H}(\alpha_1^*) = 1,0028 \cdot E_0
|
|
\end{equation}
|
|
Nebenbemerkung: $\overline{H}(\alpha = 2) = 1,013 \cdot E_0$.\\
|
|
Für dieses Verfahren gibt es vielfältigste Anwendungen und es ist nicht perturbativ (also Störungsfrei). |