Vorlesung 27.10.2009 fertig

This commit is contained in:
Stefan Bühler 2009-10-28 15:17:49 +01:00
parent d8f2eac44b
commit 5ed1966e0a
2 ha cambiato i file con 61 aggiunte e 2 eliminazioni

Vedi File

@ -48,7 +48,7 @@ X & \rInto^{i} & \F X \\
\begin{definition}
Man kann das freie Produkt $G \ast H$ über den Gruppen G und H als Wörter über dem Alphabet $G \cup H$ definieren. \\
Das freie Produkt hat folgende universelle Eigenschaft: \\
Sei $\varphi: G \times H \to A$, $G, H, A$ Gruppen, $\varphi_{\mid G \times \set{1_H}}$ und $\varphi_{\mid \set{1_G} \times H}$ jeweils ein Gruppenhomomorphismus, $i: (g,h) \mapsto gh$: \\
Sei $\varphi: G \times H \to A$, $G, H, A$ Gruppen, $\varphi_{\mid_{G \times \set{1_H}}}$ und $\varphi_{\mid_{\set{1_G} \times H}}$ jeweils ein Gruppenhomomorphismus, $i: (g,h) \mapsto gh$: \\
\parbox{5cm}{
\begin{diagram}
G \times H & \rInto^{i} & G \ast H \\
@ -79,11 +79,65 @@ $ \mathop{\Longrightarrow}{\text{1. Iso Satz}} \exists \text{ Epimorphismus } \F
\item Die endlichen einfachenGruppen sind (durchweg?) von 2 Elementen erzeugt.
\item Sei $G$ Gruppe. Wähle $X = G$, nach universeller Eigenschat $\exists !$ Epimorphismus $\F G \twoheadrightarrow G$ mit Kern $N \Rightarrow G = \F G / N$
\end{enumerate}
~
\begin{definition}
Seien $G, H$ Gruppen. Das direkte Produkt $G \times H$ ist das kartesische Produkt mit komponentenweiser Multiplikation.
Seien $G, H$ Gruppen. Das direkte Produkt $G \times H$ ist das kartesische Produkt mit komponentenweiser Multiplikation. \\
$ G \cong \tilde{G} := G \times \set{1_H} \trianglelefteq G \times H \trianglerighteq \set{1_G} \times H =: \tilde{H} \cong H $ \\
$ forall g \in \tilde{G}, h \in \tilde{H}: gh = hg \Rightarrow \tilde{G}\tilde{H} = \tilde{H}\tilde{G} = G \times H, \tilde{G} \cap \tilde{H} = \set{1_{G \times HJ}} $ \\
$ \Rightarrow $ Wir müssen nicht zwischen exterem und internem Produkt unterscheiden. \\
$ \abs{G \times H} = \abs{G} \abs{H} $
\end{definition}
Betrachte $H, N \leq G, N \trianglelefteq G \Rightarrow HN = NH, HN \leq G$ \\
Sei zusätzlich $HN = G, H \cap N = \set{1}$ \\
Sei $n \in N$. Wegen $nHn^{-1} = H$ ist $c_n: H \rightarrow H: h \mapsto \lsup n h = n h n^{-1}$ ein Automorphismus von $H$. \\
$n \mapsto c_n$ ist Gruppenhomomorphismus $N \rightarrow \Aut(H)$.
~
\begin{satz}
Sei $g \in G, c_g: G \rightarrow G: h \mapsto \lsup g h$ Automorphismus von G. Die Menge $\Inn(G) := \set{ c_g \mid g \in G} \subseteq \Aut(G) $ ist Normalteiler von $\Aut(G)$. \\
$\Out(G) := \Aut(G) / \Inn(G)$ (Gruppe der äußeren Automorphismen von G) \\
Die Abbildung $c: G \rightarrow Aut(G): g \mapsto c_g$ ist Gruppenhomomorphismus mit Bild $\Inn(G)$ (klar) und $\ker c = Z(G) := \set{g \in G \mid gh = hg \forall h \in G} $ \\
Also ist $G / Z(G) \cong \Inn(G)$
\end{satz}
\begin{bew}
Sei $g, h_1, h_2 \in G$ \\
$c_g(h_1 h_2) = g h_1 h_2 g^{-1} = g h_1 g^{-1} g h_2 g^{-1} = c_g(h_1) c_g(h_2)$ \\
$c_{g^{-1}} \circ c_g (h) = g^{-1} g h g^{-1} g = 1 h 1^{-1} = c_1(h) = id_H $ \\
Also ist $c_g$ bijektiv und daher Automorphismus von $G$.
$c: g \rightarrow \Aut(G)$ ist Homomorphismus: \\
$c_{g_1} \circ c_{g_2} (h) = g_1 g_2 h g_2^{-1} g_1^{-1} = g_1 g_2 h (g_1 g_2)^{-1} = c_{g_1 g_2} (h) $ \\
\begin{align*}
c_g = id_G & \Leftrightarrow c_g(h) = h \forall h \\
& \Leftrightarrow g h g^{-1} = h \forall h \\
& \Leftrightarrow g h = h g \forall h \\
& \Leftrightarrow g \in Z(G) \\
& \Rightarrow \ker c = Z(G)
\end{align*}
Da $\im c = \Inn(G)$ ist $\Inn(G) \leq \Aut(G)$. \\
Sei $\varphi \in \Aut(G), g \in G$: Zu zeigen: $\varphi \Inn(G) \varphi^{-1} = \Inn(G) \Leftrightarrow \varphi c_g \varphi^{-1} \in \Inn(G) \forall g, \varphi$ \\
$(\varphi c_g \varphi^{-1})(h) = \varphi(g \varphi^{-1}(h) g^{-1}) = \varphi(g) h \varphi^{-1}(g) = \varphi(g) h \varphi(g)^{-1} = c_{\varphi(g)}(h) \forall h \in G$ \\
$ \Rightarrow \varphi c_g \varphi^{-1} = c_{\varphi(g)} \in \Inn(G)$ \\
Also ist $\Inn(G) \trianglelefteq \Aut(G)$
\end{bew}
Beachte: Sei $N \leq G$. Dann ist $N \trianglelefteq G \Leftrightarrow c_g(N) = N \forall g \in G$ \\
($\Rightarrow {c_g}_{\mid_N} \in \Aut(N)$. $c_g$ ist $\in \Inn(N) \Leftrightarrow \exists n \in N: c_g = c_n$)
\begin{definition}
Sei $H < G$. Dann ist $H$ charakteristisch in $G$, falls $\varphi(H) = H \forall \varphi \in Aut(G)$.\\
Klar: $H$ char. in $G \Rightarrow H \trianglelefteq G$. \\
Und: $H \mathop{\leq}\limits_\text{char.} N \mathop{\leq}\limits_\text{char.} G \Rightarrow H \mathop{\leq}\limits_\text{char.} G$
\end{definition}
Beispiel: \\
$Z(G)$ ist char. in $G$: \\
$\forall z \in Z(G), g \in G: \varphi(g)\varphi(z) = \varphi(gz) = \varphi(zg) = \varphi(z)\varphi(g) $ \\
$\Rightarrow \varphi(z)G = G \varphi(z) $ \\
$\Rightarrow \varphi(z) \in Z(G)$
\end{document}

Vedi File

@ -1,5 +1,6 @@
\documentclass[DIV14,12pt,a4paper,pagesize,headsepline]{scrreprt}
\setlength\parindent{0pt}
\addtolength{\parskip}{\baselineskip}
\usepackage[automark]{scrpage2}
@ -67,12 +68,16 @@
\DeclareMathOperator{\Kern}{Kern}
\DeclareMathOperator{\Bild}{Bild}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\grad}{grad}
\DeclareMathOperator{\rang}{rang}
\DeclareMathOperator{\Bil}{Bil}
\DeclareMathOperator{\Char}{char}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\Inn}{Inn}
\DeclareMathOperator{\Out}{Out}
%%