use bytes::{Bytes, Buf, BufMut}; use errors::*; use common_types::*; use failure::ResultExt; use ser::packet::{DnsPacketData, DnsPacketWriteContext, remaining_bytes}; use ser::text::{DnsTextData, DnsTextFormatter, DnsTextContext, next_field}; use std::fmt; use std::io::Read; use std::net::{Ipv4Addr, Ipv6Addr}; // deriving RRData will add a unit test to make sure the type is // registered; there must be a records::types::$name `Type` constant // with the same name as the struct. #[derive(Clone, PartialEq, Eq, Debug, RRData)] #[RRClass(ANY)] pub enum LOC { Version0(LOC0), UnknownVersion{ version: u8, data: Bytes, }, } impl DnsPacketData for LOC { fn deserialize(data: &mut ::std::io::Cursor) -> Result { let version: u8 = DnsPacketData::deserialize(data)?; if 0 == version { Ok(LOC::Version0(DnsPacketData::deserialize(data)?)) } else { Ok(LOC::UnknownVersion{ version: version, data: remaining_bytes(data), }) } } fn serialize(&self, context: &mut DnsPacketWriteContext, packet: &mut Vec) -> Result<()> { match *self { LOC::Version0(ref l0) => { packet.reserve(1); packet.put_u8(0); l0.serialize(context, packet) }, LOC::UnknownVersion{version, ref data} => { packet.reserve(data.len() + 1); packet.put_u8(version); packet.put_slice(data); Ok(()) }, } } } impl DnsTextData for LOC { fn dns_parse(_context: &DnsTextContext, data: &mut &str) -> Result { let degrees_latitude = next_field(data)?.parse::()?; ensure!(degrees_latitude <= 90, "degrees latitude out of range: {}", degrees_latitude); let mut minutes_latitude = 0; let mut seconds_latitude = 0.0; let mut field = next_field(data)?; if field != "N" && field != "n" && field != "S" && field != "s" { minutes_latitude = field.parse::()?; ensure!(minutes_latitude < 60, "minutes latitude out of range: {}", minutes_latitude); field = next_field(data)?; if field != "N" && field != "n" && field != "S" && field != "s" { seconds_latitude = field.parse::()?; ensure!(seconds_latitude >= 0.0 && seconds_latitude < 60.0, "seconds latitude out of range: {}", seconds_latitude); field = next_field(data)?; } } let latitude_off = (3600_000 * degrees_latitude as u32) + (60_000 * minutes_latitude as u32) + (1_000.0 * seconds_latitude).round() as u32; ensure!(latitude_off <= 3600_000 * 180, "latitude out of range"); let latitude = match field { "N"|"n" => 0x8000_0000 + latitude_off, "S"|"s" => 0x8000_0000 - latitude_off, _ => bail!("invalid latitude orientation [NS]: {}", field), }; let degrees_longitude = next_field(data)?.parse::()?; ensure!(degrees_longitude <= 180, "degrees longitude out of range: {}", degrees_longitude); let mut minutes_longitude = 0; let mut seconds_longitude = 0.0; let mut field = next_field(data)?; if field != "E" && field != "e" && field != "W" && field != "w" { minutes_longitude = field.parse::()?; ensure!(minutes_longitude < 60, "minutes longitude out of range: {}", minutes_longitude); field = next_field(data)?; if field != "E" && field != "e" && field != "W" && field != "w" { seconds_longitude = field.parse::()?; ensure!(seconds_longitude >= 0.0 && seconds_longitude < 60.0, "seconds longitude out of range: {}", seconds_longitude); field = next_field(data)?; } } let longitude_off = (3600_000 * degrees_longitude as u32) + (60_000 * minutes_longitude as u32) + (1_000.0 * seconds_longitude).round() as u32; ensure!(longitude_off <= 3600_000 * 180, "longitude out of range"); let longitude = match field { "E"|"e" => 0x8000_0000 + longitude_off, "W"|"w" => 0x8000_0000 - longitude_off, _ => bail!("invalid longitude orientation [EW]: {}", field), }; fn trim_unit_m(s: &str) -> &str { if s.ends_with('m') { &s[..s.len()-1] } else { s } } fn parse_precision(s: &str) -> Result { let s = trim_unit_m(s); let mut m = 0; let mut e = 0; let mut dec_point = None; for &b in s.as_bytes() { if b == b'.' { ensure!(dec_point.is_none(), "invalid precision (double decimal point): {:?}", s); dec_point = Some(0); continue; } ensure!(b >= b'0' && b <= b'9', "invalid precision (invalid character): {:?}", s); if let Some(ref mut dp) = dec_point { if *dp == 2 { continue; } // ignore following digits *dp += 1; } let d = b - b'0'; if 0 == m { m = d; } else { e += 1; ensure!(e <= 9, "invalid precision (overflow): {:?}", s); } } e += 2 - dec_point.unwrap_or(0); ensure!(e <= 9, "invalid precision (overflow): {:?}", s); Ok(m << 4 | e) } let altitude = match next_field(data) { Ok(field) => { let f_altitude = trim_unit_m(field).parse::()?; let altitude = (f_altitude * 100.0 + 10000000.0).round() as i64; ensure!(altitude > 0 && (altitude as u32) as i64 == altitude, "altitude out of range"); altitude as u32 }, // standard requires the field, but the example parser doesn't.. Err(_) => 10000000, // 0m }; let size = match next_field(data) { Ok(field) => parse_precision(field)?, Err(_) => 0x12, // => 1e2 cm = 1m }; let horizontal_precision = match next_field(data) { Ok(field) => parse_precision(field)?, Err(_) => 0x16, // 1e6 cm = 10km */ }; let vertical_precision = match next_field(data) { Ok(field) => parse_precision(field)?, Err(_) => 0x13, // 1e3 cm = 10m */ }; Ok(LOC::Version0(LOC0{ size, horizontal_precision, vertical_precision, latitude, longitude, altitude, })) } fn dns_format(&self, f: &mut DnsTextFormatter) -> fmt::Result { let this = match *self { LOC::Version0(ref t) => t, _ => return Err(fmt::Error), }; const MAX_LAT_OFFSET: u32 = 3600_000 * 180; const MAX_LON_OFFSET: u32 = 3600_000 * 180; const LATLON_MID: u32 = 0x8000_0000; if this.latitude < LATLON_MID - MAX_LAT_OFFSET || this.latitude > LATLON_MID + MAX_LAT_OFFSET { return Err(fmt::Error); } if this.longitude < LATLON_MID - MAX_LON_OFFSET || this.longitude > LATLON_MID + MAX_LON_OFFSET { return Err(fmt::Error); } fn is_invalid_prec(v: u8) -> bool { // "leading-digit" << 4 | "exponent(base 10)" // if the leading digit is 0, the exponent must be 0 too. (v > 0x00 && v < 0x10) || (v >> 4) > 9 || (v & 0xf) > 9 } if is_invalid_prec(this.size) || is_invalid_prec(this.horizontal_precision) || is_invalid_prec(this.vertical_precision) { return Err(fmt::Error); } fn putlatlon2(v: u32, f: &mut DnsTextFormatter) -> fmt::Result { let msecs = v % 1000; let fullsecs = v / 1000; let secs = fullsecs % 60; let fullmins = fullsecs / 60; let mins = fullmins % 60; let deg = fullmins / 60; write!(f, "{} {} {}.{:03}", deg, mins, secs, msecs) } fn putlatlon(v: u32, f: &mut DnsTextFormatter, pos: char, neg: char) -> fmt::Result { if v >= LATLON_MID { putlatlon2(v - LATLON_MID, f)?; write!(f, "{}", pos) } else { putlatlon2(LATLON_MID - v, f)?; write!(f, "{}", neg) } } putlatlon(this.latitude, f, 'N', 'S')?; putlatlon(this.longitude, f, 'E', 'W')?; write!(f, "{:.2}m", (this.altitude as f64 - 10000000.0) / 100.0)?; fn put_prec(v: u8, f: &mut DnsTextFormatter) -> fmt::Result { let m = v >> 4; debug_assert!(m < 10); let e = v & 0xf; if e >= 2 { write!(f, "{:0, } impl DnsPacketData for A6 { fn deserialize(data: &mut ::std::io::Cursor) -> Result { let prefix: u8 = DnsPacketData::deserialize(data) .context("failed parsing field A6::prefix")?; ensure!(prefix <= 128, "invalid A6::prefix {}", prefix); let suffix_offset = (prefix / 8) as usize; debug_assert!(suffix_offset <= 16); let suffix_len = 16 - suffix_offset; check_enough_data!(data, suffix_len, "A6::suffix"); let mut addr = [0u8; 16]; data.read_exact(&mut addr[suffix_offset..16])?; let dirty_suffix = Ipv6Addr::from(addr); if suffix_offset < 16 { let mask = 0xff >> (prefix % 8); addr[suffix_offset] &= mask; } let suffix = Ipv6Addr::from(addr); let prefix_name = if data.has_remaining() { Some(DnsPacketData::deserialize(data)?) } else { None }; Ok(A6 { prefix, dirty_suffix, suffix, prefix_name, }) } fn serialize(&self, context: &mut DnsPacketWriteContext, packet: &mut Vec) -> Result<()> { let suffix_offset = (self.prefix / 8) as usize; debug_assert!(suffix_offset <= 16); let suffix = self.dirty_suffix.octets(); let suffix_data = &suffix[suffix_offset..]; packet.reserve(1 /* prefix */ + suffix_data.len()); packet.put_u8(self.prefix); packet.put_slice(suffix_data); if let Some(ref n) = self.prefix_name { n.serialize(context, packet)?; } Ok(()) } } impl DnsTextData for A6 { fn dns_parse(context: &DnsTextContext, data: &mut &str) -> Result { let prefix: u8 = DnsTextData::dns_parse(context, data) .context("failed parsing field A6::prefix")?; ensure!(prefix <= 128, "invalid A6::prefix {}", prefix); let suffix_offset = (prefix / 8) as usize; debug_assert!(suffix_offset <= 16); let suffix: Ipv6Addr = DnsTextData::dns_parse(context, data) .context("failed parsing field A6::suffix")?; // clear prefix bits let mut suffix = suffix.octets(); for i in 0..suffix_offset { suffix[i] = 0; } if suffix_offset < 16 { let mask = 0xff >> (prefix % 8); suffix[suffix_offset] &= mask; } let suffix = Ipv6Addr::from(suffix); let prefix_name = if !data.is_empty() { Some(DnsTextData::dns_parse(context, data) .context("failed parsing field A6::prefix_name")?) } else { None }; Ok(A6 { prefix, dirty_suffix: suffix.clone(), suffix, prefix_name, }) } fn dns_format(&self, f: &mut DnsTextFormatter) -> fmt::Result { if self.dirty_suffix != self.suffix { // parsing text clears the padding, so we would loose data. // use binary representation instead. return Err(fmt::Error); } write!(f, "{} {}", self.prefix, self.suffix)?; if let Some(ref prefix_name) = self.prefix_name { write!(f, "{}", prefix_name)?; } Ok(()) } } #[derive(Clone, PartialEq, Eq, Debug)] pub enum IpsecKeyGateway { None, Ipv4(Ipv4Addr), Ipv6(Ipv6Addr), Name(DnsName), } #[derive(Clone, PartialEq, Eq, Debug, RRData)] #[RRClass(ANY)] pub enum IPSECKEY { Known{ precedence: u8, algorithm: u8, gateway: IpsecKeyGateway, public_key: Base64RemainingBlob, }, UnknownGateway{ precedence: u8, gateway_type: u8, algorithm: u8, // length of gateway is unknown, can't split gateway and public key remaining: Bytes, } } impl DnsPacketData for IPSECKEY { fn deserialize(data: &mut ::std::io::Cursor) -> Result { let precedence = u8::deserialize(data)?; let gateway_type = u8::deserialize(data)?; let algorithm = u8::deserialize(data)?; let gateway = match gateway_type { 0 => IpsecKeyGateway::None, 1 => IpsecKeyGateway::Ipv4(Ipv4Addr::deserialize(data)?), 2 => IpsecKeyGateway::Ipv6(Ipv6Addr::deserialize(data)?), 3 => IpsecKeyGateway::Name(DnsName::deserialize(data)?), _ => return Ok(IPSECKEY::UnknownGateway{ precedence, gateway_type, algorithm, remaining: remaining_bytes(data), }), }; Ok(IPSECKEY::Known{ precedence, algorithm, gateway, public_key: Base64RemainingBlob::deserialize(data)?, }) } fn serialize(&self, context: &mut DnsPacketWriteContext, packet: &mut Vec) -> Result<()> { match *self { IPSECKEY::Known{precedence, algorithm, ref gateway, ref public_key} => { packet.reserve(3); packet.put_u8(precedence); let gateway_type: u8 = match *gateway { IpsecKeyGateway::None => 0, IpsecKeyGateway::Ipv4(_) => 1, IpsecKeyGateway::Ipv6(_) => 2, IpsecKeyGateway::Name(_) => 3, }; packet.put_u8(gateway_type); packet.put_u8(algorithm); match *gateway { IpsecKeyGateway::None => (), IpsecKeyGateway::Ipv4(ref a) => a.serialize(context, packet)?, IpsecKeyGateway::Ipv6(ref a) => a.serialize(context, packet)?, IpsecKeyGateway::Name(ref n) => n.serialize(context, packet)?, }; public_key.serialize(context, packet)?; }, IPSECKEY::UnknownGateway{precedence, gateway_type, algorithm, ref remaining} => { packet.reserve(3 + remaining.len()); packet.put_u8(precedence); packet.put_u8(gateway_type); packet.put_u8(algorithm); packet.put_slice(remaining); } } Ok(()) } } impl DnsTextData for IPSECKEY { fn dns_parse(context: &DnsTextContext, data: &mut &str) -> Result { let precedence = u8::dns_parse(context, data)?; let gateway_type = u8::dns_parse(context, data)?; let algorithm = u8::dns_parse(context, data)?; let gateway = match gateway_type { 0 => IpsecKeyGateway::None, 1 => IpsecKeyGateway::Ipv4(Ipv4Addr::dns_parse(context, data)?), 2 => IpsecKeyGateway::Ipv6(Ipv6Addr::dns_parse(context, data)?), 3 => IpsecKeyGateway::Name(DnsName::dns_parse(context, data)?), _ => bail!("unknown gateway type {} for IPSECKEY", gateway_type), }; Ok(IPSECKEY::Known{ precedence, algorithm, gateway, public_key: Base64RemainingBlob::dns_parse(context, data)?, }) } fn dns_format(&self, f: &mut DnsTextFormatter) -> fmt::Result { match *self { IPSECKEY::Known{precedence, algorithm, ref gateway, ref public_key} => { let gateway_type: u8 = match *gateway { IpsecKeyGateway::None => 0, IpsecKeyGateway::Ipv4(_) => 1, IpsecKeyGateway::Ipv6(_) => 2, IpsecKeyGateway::Name(_) => 3, }; write!(f, "{} {} {}", precedence, gateway_type, algorithm)?; match *gateway { IpsecKeyGateway::None => (), IpsecKeyGateway::Ipv4(ref a) => a.dns_format(f)?, IpsecKeyGateway::Ipv6(ref a) => a.dns_format(f)?, IpsecKeyGateway::Name(ref n) => n.dns_format(f)?, }; public_key.dns_format(f)?; Ok(()) }, IPSECKEY::UnknownGateway{..} => Err(fmt::Error), } } }