2008-06-23 10:39:00 +00:00
|
|
|
\chapter{Potentialstufen und Potentialtöpfe}
|
|
|
|
\section{Einschub: Wahrscheinlichkeitsstrom}
|
|
|
|
\begin{equation}
|
|
|
|
\rho(x,t) = \psi(x,t) \psi^*(x,t)
|
|
|
|
\end{equation}
|
|
|
|
ist die Wahrscheinlichkeit das Teilchen am Ort x zu messen.
|
|
|
|
|
|
|
|
\begin{align}
|
|
|
|
\partial_t \rho(x,t) &= \psi^*(x,t)~\partial_t \psi(x,t) + \psi(x,t)~\partial_t \psi^*(x,t)\\
|
|
|
|
&= \psi^*(x,t) \left( \frac{1}{i \hbar} \left( -\frac{\hbar^2}{2m} \partial_x^2 - V(x)\right) \psi(x,t) \right) +
|
|
|
|
\psi^*(x,t) \left( -\frac{1}{i \hbar} \left( -\frac{\hbar^2}{2m} \partial_x^2 + V(x)\right) \psi(x,t) \right)\\
|
|
|
|
&= -\frac{1}{\hbar} \left( -\frac{\hbar^2}{2m} \psi^*(x,t)~\partial_x^2\psi(x,t) + \frac{\hbar^2}{2m} \psi(x,t)~\partial_x^2\psi^*(x,t) \right)\\
|
|
|
|
&= \frac{i \hbar}{2m} \partial_x \left( \psi^*~\partial_x \psi - \psi~\partial_x \psi^* \right) \equiv -\partial_x j(x,t)
|
|
|
|
\end{align}
|
|
|
|
mit
|
|
|
|
\begin{equation}
|
|
|
|
j(x,t) \equiv \frac{\hbar}{m} \im{\psi^*(x,t)~\partial_x \psi(x,t)}
|
|
|
|
\end{equation}
|
|
|
|
der Wahscheinlichkeitsstromdichte (``Kontinuitätsgleichung''; gilt für jede Erhaltungsgröße).
|
|
|
|
\paragraph*{Beispiel: Ebene Welle}
|
|
|
|
\begin{align}
|
|
|
|
\psi(x,t) &= \frac{1}{\sqrt{2 \pi \hbar}} e^{\frac{i p_0}{\hbar}x - \omega t}\\
|
|
|
|
j(x,t) &= \frac{1}{\sqrt{2 \pi \hbar}} \frac{\hbar}{m} \im{\frac{i p}{\hbar}}%\\
|
|
|
|
% &= \frac{1}{\sqrt{2 \pi \hbar}} \frac{p}{}
|
|
|
|
\end{align}
|
|
|
|
|
2008-06-30 13:06:14 +00:00
|
|
|
\section{Streuung an der Potentialstufe}
|
|
|
|
%\begin{figure}[h]
|
|
|
|
%\includegraphics{pdf/II/03-02-00.pdf}
|
|
|
|
%\end{figure}
|
|
|
|
\paragraph*{klassisch}
|
|
|
|
\subparagraph*{Fall 1} $E > V_0$
|
|
|
|
\begin{align}
|
|
|
|
x < 0:~ & p(x < 0) = \sqrt{2m E}\\
|
|
|
|
x > 0:~ & p(x > 0) = \sqrt{2m (E - V_0)}
|
|
|
|
\end{align}
|
|
|
|
Teilchen passiert die Potentialstufe, verliert Impuls
|
|
|
|
\subparagraph*{Fall 2} $E < V_0$
|
|
|
|
\begin{equation}
|
|
|
|
p(x < 0) = \sqrt{2m E}
|
|
|
|
\end{equation}
|
|
|
|
Teilchen wird reflektiert
|
|
|
|
|
|
|
|
\paragraph*{quantal}
|
|
|
|
\subparagraph*{Fall 1} $E > 0$\\
|
|
|
|
stationäre SG:
|
|
|
|
\begin{equation}
|
|
|
|
\left( -\frac{\hbar^2}{2m} \diffPs{x}^2 V(x) \right) \phi(x) = E \phi(x)
|
|
|
|
\end{equation}
|
|
|
|
links: $x < 0$
|
|
|
|
\begin{equation}
|
|
|
|
\diffPs{x}^2 \phi(x) = -k^2 \phi(x)
|
|
|
|
\end{equation}
|
|
|
|
mit
|
|
|
|
\begin{equation}
|
|
|
|
k = \sqrt{\frac{2m}{\hbar^2}}
|
|
|
|
\end{equation}
|
|
|
|
Lösung:
|
|
|
|
\begin{equation}
|
|
|
|
\phi(x) = A e^{i k x} + B e^{-i k x}
|
|
|
|
\end{equation}
|
|
|
|
rechts: $x > 0$
|
|
|
|
\begin{equation}
|
|
|
|
\left( -\frac{\hbar^2}{2m} \diffPs{x}^2 + V_0 \right) \phi(x) = E \phi(x)
|
|
|
|
\end{equation}
|
|
|
|
Lösung:
|
|
|
|
\begin{equation}
|
|
|
|
\phi(x) = C e^{i q x} + D e^{-i q x}
|
|
|
|
\end{equation}
|
|
|
|
mit
|
|
|
|
\begin{equation}
|
|
|
|
q = \sqrt{\frac{2m (E - V_0)}{\hbar^2}}
|
|
|
|
\end{equation}
|
|
|
|
Randbedinung bei $x = 0$
|
|
|
|
\begin{align}
|
|
|
|
\phi(-\varepsilon) &= \phi(+\varepsilon)\\
|
|
|
|
\diffPs{x} \phi(-\varepsilon) &= \diffPs{x} \phi(+\varepsilon)\\
|
|
|
|
\rightarrow A + B &= C + D\\
|
|
|
|
i k (A - B) &= i q (C - D)\\[15pt]
|
|
|
|
\inlinematrix{1 & 1 \\ i k & -i k} \inlinematrix{A \\ B} &= \inlinematrix{1 & 1 \\ i q & -i q} \inlinematrix{C \\ D}\\
|
|
|
|
\inlinematrix{A \\ B} &= \frac{1}{2k} \inlinematrix{k+q & k-q \\ k-q & k+q} \inlinematrix{C \\ D}
|
|
|
|
\end{align}
|
|
|
|
$\rightarrow$ Randbedingung einer von links laufenden Welle\\
|
|
|
|
$\Rightarrow$ keine Komponente einer von rechts einlaufenden Welle für $x > 0$ erlaubt!\\
|
|
|
|
$\Rightarrow$ $D \equiv 0$\\
|
|
|
|
o.B.d.A.: $A = 1$
|
|
|
|
\begin{align}
|
|
|
|
A &= \frac{k + q}{2k} C ~ \rightarrow C = \frac{2k}{k+q}\\
|
|
|
|
B &= \frac{k - q}{2k} C ~ \rightarrow B = \frac{k - q}{k + q}
|
|
|
|
\end{align}
|
|
|
|
Strom links: $x < 0$
|
|
|
|
\begin{align}
|
|
|
|
j(x < 0) &= \frac{\hbar}{m} \im{\diffPs{x}\phi ~ \phi^*}\\
|
|
|
|
&= \frac{\hbar}{m} \im{i k \left(A e^{i k x} - B e^{-i k x} \right) \left(A^* e^{- i k x} + B^* e^{i k x}\right)}\\
|
|
|
|
&= \frac{\hbar}{m} \im{ik \left( A A^* - B B^*\right) + ik \left( A B^* e^{2 i k x} - A^* B e^{-2 i k x} \right)}\\
|
|
|
|
&= \frac{\hbar}{m} k \left( 1 - \left( \frac{k - q}{k + q} \right)^2 \right) \equiv j_I - j_R
|
|
|
|
\end{align}
|
|
|
|
mit
|
|
|
|
\begin{align}
|
|
|
|
j_I &= \frac{\hbar k}{m} &\text{einfallend}\\
|
|
|
|
j_R &= \frac{\hbar}{m} k \left( \frac{k - q}{k + q} \right)^2 \equiv R j_I &\text{reflectiert}
|
|
|
|
\end{align}
|
2008-07-01 10:17:48 +00:00
|
|
|
Strom rechts: $x > 0$
|
|
|
|
\begin{align}
|
|
|
|
j(x > 0) &= \frac{\hbar}{m} \im{\diffPs{x} \phi(x > 0) \phi(x > 0)}\\
|
|
|
|
&= \frac{\hbar}{m} q C^2\\
|
|
|
|
&= \frac{\hbar}{m} q \sbk{\frac{2k}{k + q}}^2
|
|
|
|
&\equiv j_T \equiv T j_I
|
|
|
|
\end{align}
|
|
|
|
mit dem Reflexionskoeffizient
|
|
|
|
\begin{equation}
|
|
|
|
R \equiv \frac{j_R}{j_I} = \left(\frac{k - q}{k + q}\right)^2
|
|
|
|
\end{equation}
|
|
|
|
und dem Transmissionskoeffizient
|
|
|
|
\begin{equation}
|
|
|
|
T \equiv \frac{j_T}{j_I} = \frac{q}{k} \left( \frac{2k}{k + q} \right)^2
|
|
|
|
\end{equation}
|
|
|
|
für die gilt:
|
|
|
|
\begin{equation}
|
|
|
|
\boxed{R + T = 1}
|
|
|
|
\end{equation}
|
|
|
|
%\begin{figure}[h]
|
|
|
|
%\includegraphics{pdf/II/03-02-01.pdf}
|
|
|
|
%\end{figure}
|
|
|
|
Zusammenfassung:\\
|
|
|
|
Auch für $E > V_0$ wird ein Teil reflektiert!
|
|
|
|
|
|
|
|
\subparagraph*{Fall 2} $0 < E < V_0$\\
|
|
|
|
links: wie oben\\[15pt]
|
|
|
|
rechts:
|
|
|
|
\begin{align}
|
|
|
|
\diffPs{x}^2 \phi(x) &= 2m \frac{V_0 - E}{\hbar^2} \phi(x)\\
|
|
|
|
\phi(x) &= C e^{-\kappa x} + D e^{\kappa x}
|
|
|
|
\end{align}
|
|
|
|
mit
|
|
|
|
\begin{equation}
|
|
|
|
\kappa \equiv \sqrt{\frac{2m (V_0 - E)}{\hbar^2}}; ~ D \stackrel{!}{=} 0 \text{ (explodiert für } x \rightarrow +\infty \text{)}
|
|
|
|
\end{equation}
|
|
|
|
Stetigkeit:
|
|
|
|
\begin{align}
|
|
|
|
A + B &= C\\[15pt]
|
|
|
|
\diffPs{x} \phi(x) \cdot i k (A - B) &= -C \kappa\\[15pt]
|
|
|
|
A &= 1\\
|
|
|
|
\rightarrow C &= \frac{2k}{k + i \kappa}\\
|
|
|
|
B &= \frac{k - i \kappa}{k + i \kappa}
|
|
|
|
\end{align}
|
|
|
|
transmittierter Strom:
|
|
|
|
\begin{align}
|
|
|
|
j_T = j(x > 0) &= \frac{\hbar}{m} \im{\diffPs{x}\phi(x > 0) ~ \phi^*(x > 0)}\\
|
|
|
|
&= \frac{\hbar}{m} \im{\frac{(-\kappa) 2 k}{k + i\kappa} \cdot \frac{2k}{k i \kappa} e^{-2 \kappa x}}\\
|
|
|
|
&=0\\[15pt]
|
|
|
|
j_R &= j_I
|
|
|
|
\end{align}
|
|
|
|
Wellenfunktion für $x > 0$
|
|
|
|
\begin{align}
|
|
|
|
\phi(x) &= C e^{-\kappa x}\\[15pt]
|
|
|
|
\rho(x) &= \abs{\phi(x)}^2 = C C^* e^{-2 \kappa x} \neq 0
|
|
|
|
\end{align}
|
|
|
|
%\begin{figure}[h]
|
|
|
|
%\includegraphics{pdf/II/03-02-00.pdf}
|
|
|
|
%\caption{das Teilchen dringt in die Potentialstufe ein}
|
|
|
|
%\end{figure}
|
|
|
|
|
|
|
|
\section{Potentialtopf}
|
|
|
|
%\begin{figure}[h]
|
|
|
|
%\includegraphics{pdf/II/03-03-00.pdf}
|
|
|
|
%\caption{gebundene Zustände $0 > E > -\abs{V_0}$}
|
|
|
|
%\end{figure}
|
|
|
|
\paragraph*{symmetrische Lösung}
|
|
|
|
\begin{align}
|
|
|
|
\abs{x} < a: ~ \phi(x) &= A \cos(q x)\\
|
|
|
|
q &= \frac{2m (E + \abs{V_0})}{\hbar^3}\\
|
|
|
|
\abs{x} > a: ~ \phi(x) &= B e^{-\kappa \abs{x}}\\
|
|
|
|
\kappa^2 &= \frac{2m}{\hbar^2} \abs{E}
|
|
|
|
\end{align}
|
|
|
|
Stetigkeit:
|
|
|
|
\begin{align}
|
|
|
|
A \cos(q a) &= B e^{-\kappa a} \label{eqn00}\\
|
|
|
|
\text{von } \diffPs{x}\phi(0) ~ \rightarrow -A q \sin(q a) &= -\kappa B e^{-\kappa a} \label{eqn01}
|
|
|
|
\end{align}
|
|
|
|
teile \ref{eqn01} durch \ref{eqn00}:
|
|
|
|
\begin{equation}
|
|
|
|
\tan(q a) = \frac{\kappa}{q} = \frac{\sqrt{\frac{2m a^2 \abs{V_0}}{\hbar^2} - (q a)^2}}{q a}
|
|
|
|
\end{equation}
|
|
|
|
%\begin{figure}[h]
|
|
|
|
%\includegraphics{pdf/II/03-03-01.pdf}
|
|
|
|
%\end{figure}
|
|
|
|
\begin{itemize}
|
|
|
|
\item endlich viele diskrete $q$-Werte d.h. $E$-Werte mit Lösung
|
|
|
|
\item es gibt mindestens eine Lösung
|
|
|
|
\end{itemize}
|
|
|
|
für $\frac{2m a^2 \abs{V_0}}{\hbar^2} < \pi^2$ existiert nur eine Lösung
|
|
|
|
\subparagraph*{Grundzustand $\phi_0$}
|
|
|
|
%\begin{figure}[h]
|
|
|
|
%\includegraphics{pdf/II/03-03-02.pdf}
|
|
|
|
%\end{figure}
|
|
|
|
\begin{equation}
|
|
|
|
\phi_0(x) = \left\lbrace \begin{array}{ll} A \cos(q_0) & \abs{x} < a\\ B e^{-\kappa x} & \abs{x} \geq a \end{array} \right.
|
|
|
|
\end{equation}
|
|
|
|
$A$, $B$ über Stetigkeit und Normierung berechnen
|
|
|
|
|
|
|
|
\paragraph*{asymmetrische Lösung}
|
|
|
|
\begin{align}
|
|
|
|
\abs{x} < a: ~ \phi(x) &= A \sin(q x)\\
|
|
|
|
\abs{x} > a: ~ \phi(x) &= \sign(x) e^{-\abs{\kappa} x}
|
|
|
|
\end{align}
|
|
|
|
wie oben:
|
|
|
|
\begin{equation}
|
|
|
|
\tan(q a) = -\frac{q a}{\sqrt{\frac{2 m a^2 \abs{V_0}}{\hbar^2} - q a}}
|
|
|
|
\end{equation}
|
|
|
|
gibt es nur falls $\frac{2 m a^2 \abs{V_0}}{\hbar^2} > \frac{\pi^2}{4}$
|
|
|
|
\subparagraph*{Spektrum}
|
|
|
|
%\begin{figure}[h]
|
|
|
|
%\includegraphics{pdf/II/03-03-03.pdf}
|
|
|
|
%\end{figure}
|