[formelsammlung] ein paar kleine fehlerkorrekturen
This commit is contained in:
parent
2e42f42852
commit
4b586f2fdd
@ -24,7 +24,7 @@
|
|||||||
Eigenschaft 4 bedeutet, daß die Abbildung $b\mapsto [a,b]$ eine Derivation ist.
|
Eigenschaft 4 bedeutet, daß die Abbildung $b\mapsto [a,b]$ eine Derivation ist.
|
||||||
|
|
||||||
|
|
||||||
\subsubsection*{Levi-Civita-Symbol:}
|
\subsubsection*{Levi-Civita-Symbol}
|
||||||
\begin{math}
|
\begin{math}
|
||||||
\varepsilon_{12\dots n} = 1 \\
|
\varepsilon_{12\dots n} = 1 \\
|
||||||
\varepsilon_{ij\dots u\dots v\dots} = -\varepsilon_{ij\dots v\dots u\dots}\\
|
\varepsilon_{ij\dots u\dots v\dots} = -\varepsilon_{ij\dots v\dots u\dots}\\
|
||||||
@ -40,17 +40,18 @@
|
|||||||
\det A = \levicivita{i_1 i_2 \dots i_n} A_{1i_1} A_{2i_2} \dots A_{ni_n}
|
\det A = \levicivita{i_1 i_2 \dots i_n} A_{1i_1} A_{2i_2} \dots A_{ni_n}
|
||||||
\end{math}
|
\end{math}
|
||||||
\subsubsection*{Kronecker-Delta}
|
\subsubsection*{Kronecker-Delta}
|
||||||
$\krondelta{i,j}= \begin{cases} 1 & \mbox{falls } i=j \\ 0 & \mbox{falls } i \neq j \end{cases}$ \\
|
\equationblock{\krondelta{i,j} = \begin{cases} 1 & \mbox{falls } i=j \\ 0 & \mbox{falls } i \neq j \end{cases}}
|
||||||
Die $n\times n$-Einheitsmatrix kann als $(\krondelta{ij})_{i,j\in\{1,\ldots,n\}}$ geschrieben werden.
|
Die $n\times n$-Einheitsmatrix kann als $(\krondelta{ij})_{i,j\in\{1,\ldots,n\}}$ geschrieben werden.
|
||||||
|
|
||||||
\subsubsection*{Reihenentwicklungen}
|
\subsubsection*{Reihenentwicklungen}
|
||||||
\begin{align}
|
\begin{align}
|
||||||
exp(x) = \sum_{n = 0}^{\infty} {\frac{x^n}{n!}} \\
|
\exp(x) &= \sum_{n = 0}^{\infty} {\frac{x^n}{n!}} \\
|
||||||
sin (x) = \sum_{n=0}^\infty (-1)^n\frac{x^{2n+1}}{(2n+1)!} \\
|
\sin(x) &= \sum_{n=0}^\infty (-1)^n\frac{x^{2n+1}}{(2n+1)!} \\
|
||||||
cos (x) = \sum_{n=0}^\infty (-1)^n\frac{x^{2n}}{(2n)!}
|
\cos(x) &= \sum_{n=0}^\infty (-1)^n\frac{x^{2n}}{(2n)!}
|
||||||
\end{align}
|
\end{align}
|
||||||
|
|
||||||
\section{\hypertarget{trans_ft}{Fourier-Transformation}}
|
\section{Fourier-Transformation}
|
||||||
|
\hypertarget{trans_ft}{}
|
||||||
\subsection*{Fourier-Reihe}
|
\subsection*{Fourier-Reihe}
|
||||||
\subsubsection*{Definitionen:}
|
\subsubsection*{Definitionen:}
|
||||||
\subsubsection*{Eigenschaften:}
|
\subsubsection*{Eigenschaften:}
|
||||||
@ -83,7 +84,8 @@ Hierbei ist $F(\omega)$ das kontinuierliche Spektrum, das die Amplitude jeder Fr
|
|||||||
\subsection*{Matrizen-Operationen}
|
\subsection*{Matrizen-Operationen}
|
||||||
\subsubsection*{Spur}
|
\subsubsection*{Spur}
|
||||||
\subsubsection*{Determinatante}
|
\subsubsection*{Determinatante}
|
||||||
\subsubsection*{\hypertarget{fs_linalg_mtrx_inv}{Inversion}}
|
\subsubsection*{Inversion}
|
||||||
|
\hypertarget{fs_linalg_mtrx_inv}{}
|
||||||
\begin{math}
|
\begin{math}
|
||||||
A^{-1} = \inlinematrix{a & b \\ c & d}^{-1} = \frac{1}{ad - bc} \inlinematrix{d & -b \\ -c & a}
|
A^{-1} = \inlinematrix{a & b \\ c & d}^{-1} = \frac{1}{ad - bc} \inlinematrix{d & -b \\ -c & a}
|
||||||
\end{math}
|
\end{math}
|
||||||
|
Loading…
Reference in New Issue
Block a user