neue Verzeichnisstruktur für Bilder (Teil 2)

This commit is contained in:
Oliver Groß 2008-08-08 14:26:06 +02:00
parent ea52ea25ed
commit 4c1844534a
8 changed files with 105 additions and 105 deletions

View File

@ -1,7 +1,7 @@
\chapter{Stern-Gerlach-Experimente}
\section{Versuchsaufbau (1921)}
\begin{figure}[H] \centering
\includegraphics{1-001.pdf}
\includegraphics{pdf/I/01-01-00.pdf}
\caption{Versuchsskizze}
\end{figure}
@ -29,16 +29,16 @@ dominiert
Wir erwarten, dass $\overrightarrow{\mu}$ unpolarisiert ist mit $\mu_z = abs(\mu) \cos \theta$ mit $\theta$ zufällig $p(\theta) = \frac{2\pi}{4\pi} \sin \theta$ und damit auf dem Schirm:
\begin{figure}[H] \centering
\includegraphics{1-002.pdf}
\includegraphics{pdf/I/01-01-01.pdf}
\caption{klassisches Histogramm}
\end{figure}
Das Ergebnis, insbesondere 3. ist klassisch nicht zu verstehen!
\section{Schlüsselexperimente}
\begin{figure}[H] \centering
\includegraphics{1-003.pdf}
\includegraphics{pdf/I/01-02-00.pdf}
bzw.
\includegraphics{1-004.pdf}
\includegraphics{pdf/I/01-02-01.pdf}
\caption{Kurzdarstellung}
\end{figure}
$SG, n$ sei ein in $\vec{n}$ Richtung orientierter Magnet.\\
@ -49,36 +49,36 @@ Physikalische Eigenschaft: Spin ($\cequiv$ Auslenkung) in $+\vec{n}$ Richtung
\subsection*{Ex. 1}
\begin{figure}[H] \centering
\includegraphics{1-005.pdf}
\includegraphics{pdf/I/01-02-02.pdf}
\end{figure}
Fazit: Wiederholung der gleichen Messung führt auf das identische Ergebnis.
\subsection*{Ex. 2}
\subsubsection*{a}
\begin{figure}[H] \centering
\includegraphics{1-006.pdf}
\includegraphics{pdf/I/01-02-03.pdf}
\end{figure}
Fazit: Die $x$-Messung hat den $z$-Spin beeinflusst.
\subsubsection*{b}
\begin{figure}[H] \centering
\includegraphics{1-007.pdf}
\includegraphics{pdf/I/01-02-04.pdf}
\end{figure}
\subsection*{Ex. 3}
\begin{figure}[H] \centering
\includegraphics{1-008.pdf}
\includegraphics{pdf/I/01-02-05.pdf}
\end{figure}
\section{Superposition VS Messung}
Zur Erinnerung:
\begin{figure}[H] \centering
\includegraphics{1-009.pdf}
\includegraphics{pdf/I/01-03-00.pdf}
\end{figure}
\subsection*{Ex. 4}
\begin{figure}[H] \centering
\includegraphics{1-010.pdf}
\includegraphics{pdf/I/01-03-01.pdf}
\end{figure}
Fazit: Wird $\sigma_x$ nicht gemessen bleibt $\sigma_z$ erhalten.
@ -86,22 +86,22 @@ Fazit: Wird $\sigma_x$ nicht gemessen bleibt $\sigma_z$ erhalten.
\subsubsection*{a}
\begin{figure}[H] \centering
\includegraphics{1-011.pdf}
\includegraphics{pdf/I/01-03-02.pdf}
\end{figure}
\subsubsection*{b}
\begin{figure}[H] \centering
\includegraphics{1-012.pdf}
\includegraphics{pdf/I/01-03-03.pdf}
\end{figure}
\subsubsection*{c}
\begin{figure}[H] \centering
\includegraphics{1-013.pdf}
\includegraphics{pdf/I/01-03-04.pdf}
\end{figure}
\subsubsection*{d}
\begin{figure}[H] \centering
\includegraphics{1-014.pdf}
\includegraphics{pdf/I/01-03-05.pdf}
\end{figure}
Wenn der mittlere $SG, x$ immer schwächer wird ($B_x \rightarrow 0$), muss sich das Muster auf dem Schirm wie oben gezeigt verändern.\\
$\Rightarrow$ Intereferenz!

View File

@ -4,7 +4,7 @@
\section{Hilbertraum und $\sigma_z$-Darstellung}
\begin{itemize}
\item immer nur $\pm 1$ als Messwert %TODO $\rightarrow$ $\hilbert = 2$
\item immer nur $\pm 1$ als Messwert $\rightarrow$ $\dim(\hilbert) = 2$
\item wähle als Basis $\set{\ket{1}, \ket{2}} = \set{\ket{z+}, \ket{z-}} = \set{\inlinematrix{1\\ 0}, \inlinematrix{0\\ 1}}$ die Eigenvektoren des zu ``Spin in z-Richtung'', $\sigma_z$, gehörenden Operatoren:
\begin{align}
\sigma_z \ket{z+} &= (+1) \ket{z+}\\
@ -18,8 +18,8 @@
\end{itemize}
\subsection*{Ex. 1}
\begin{figure}[h]
\includegraphics{4-001.pdf}
\begin{figure}[H] \centering
\includegraphics{pdf/I/04-01-00.pdf}
\end{figure}
\begin{align}
\prob{\left. \sigma_z \cequiv +1 \right| \ket{\psi_0} = \ket{z+}} &= \abs{\braket{z+}{\psi_0}}^2\\
@ -69,8 +69,8 @@ Welcher Operator $\sigma_z$ entspricht der physikalischen Größe Spin in n-Rich
\end{equation}
\subsection*{Ex. 2a}
\begin{figure}[h]
\includegraphics{4-002.pdf}
\begin{figure}[H] \centering
\includegraphics{pdf/I/04-02-00.pdf}
\end{figure}
\begin{align}
\prob{\left. \sigma_x \cequiv +1 \right| \ket{\psi_0} = \ket{z+}} \stackrel{Ex}{=} \frac{1}{2} &=\stackrel{P2b}{=} \abs{\braket{x+}{z+}}^2\\
@ -93,8 +93,8 @@ analog zu Ex. 2a:
\end{equation}
\subsection*{Ex. 2c}
\begin{figure}[h]
\includegraphics{4-003.pdf}
\begin{figure}[H] \centering
\includegraphics{pdf/I/04-02-01.pdf}
\end{figure}
\begin{align}
\prob{\left. \sigma \cequiv +1 \right| \ket{x+}} \stackrel{Ex}{=} \frac{1}{2} &\stackrel{P2b}{=} \abs{\braket{y+}{x+}}^2\\
@ -134,8 +134,8 @@ Konvention: $\alpha_x = 0;$ $\alpha_x = \frac{\pi}{2}$
\end{align}
\section*{Allgemeine Form von $\sigma_n$}
\begin{figure}[h]
\includegraphics{4-004.pdf}
\begin{figure}[H] \centering
\includegraphics{pdf/I/04-05-00.pdf}
\end{figure}
\begin{equation}
\vec{n} = \inlinematrix{n_x\\ n_y\\ n_z} = \inlinematrix{\sin \theta \cos \phi\\ \sin \theta \sin \phi\\ \cos \theta}
@ -174,8 +174,8 @@ Konkret:
\end{align}
\subsection*{zu Ex 4}
\begin{figure}[h]
\includegraphics{4-005.pdf}
\begin{figure}[H] \centering
\includegraphics{pdf/I/04-05-01.pdf}
\end{figure}
In den 2. SG,z:
\begin{align}

View File

@ -80,8 +80,8 @@ $\rightarrow$ unabhängig von $t$!
\begin{equation}
\ket{\psi(t_0)} = \ket{x+} = \frac{1}{\sqrt{2}} \inlinematrix{1 \\ 1}
\end{equation}
\begin{figure}[h]
\includegraphics{5-001.pdf}
\begin{figure}[H] \centering
\includegraphics{pdf/I/05-02-00.pdf}
\end{figure}
\begin{equation}
\prob{\left. \sigma_x \cequiv +1 \right| \ket{\psi(t)}} = \frac{1}{4} 4 \cos^2 \frac{\omega}{2} (t-t_0)
@ -96,8 +96,8 @@ d.h. der Mittelwert präzediert um die z-Achse.
\begin{equation}
\vec{B}(t) = B_z \vec{e}_z + B_1 \left( \cos(\omega t) \vec{e}_x \sin(\omega t) \vec{e}_y \right)
\end{equation}
\begin{figure}[h]
\includegraphics{5-002.pdf}
\begin{figure}[H] \centering
\includegraphics{pdf/I/05-03-00.pdf}
\end{figure}
\begin{equation}
H(t) = \frac{\hbar \omega_0}{2} \sigma_z + \frac{\hbar \omega_1}{2} \left( \cos(\omega t) \sigma_x \sin(\omega t) \sigma_y \right)
@ -129,19 +129,19 @@ mit $\Omega^2 = (\omega - \omega_0)^2 + \omega_1^2$ vollständig gelöst (bis au
&= \abs{c_-(t)}^2\\
&= \left( \frac{\omega_1}{\Omega} \right)^2 \sin^2\left(\frac{\Omega}{2}t\right)
\end{align}
\begin{figure}[h]
\includegraphics{5-003.pdf}
\begin{figure}[H] \centering
\includegraphics{pdf/I/05-03-01.pdf}
\end{figure}
\subparagraph{Resonanzfall}
$\omega_1 = \Omega$ d.h. $\omega = \omega_0$, d.h. $B_1$-Feld zirkuliert mit der in 5.2 berechneten Präzessionsfrequenz.
\begin{itemize}
\item Im Resonenzfall flippt der Spin mit Sicherheit auch für kleine $B_1$
\item Rabi (1939, Nobel '44) misst meangetisches Moment des Protons durch\\
% \begin{figure}[h]
\includegraphics{5-004.pdf}\\
\includegraphics{5-005.pdf}
% \end{figure}
\item Rabi (1939, Nobel '44) misst meangetisches Moment des Protons durch
\begin{figure}[H] \centering
\includegraphics{pdf/I/05-03-02.pdf}\\
\includegraphics{pdf/I/05-03-03.pdf}
\end{figure}
\item wichtige Anwendung: \underline{\underline{NMR}} (Idee: Magnetfeld hängt von der lokalen Umgebung ab.)
\end{itemize}

View File

@ -43,18 +43,18 @@ Die möglichen $E$-Werte sind die Eigenwerte des $H$-Operators. Diese Form der P
\end{enumerate}
\section{Beispiel 1: $\infty$-Potentialtopf}
%\begin{figure}[h]
%\includegraphics{pdf/II/00-02-00.pdf}
%\end{figure}
\begin{figure}[H] \centering
\includegraphics{pdf/II/00-02-00.pdf}
\end{figure}
\begin{equation}
V(x) = \left\lbrace \begin{array}{ll} \infty &\text{für } \abs{x} > a\\ 0 &\text{für } \abs{x} < a \end{array} \right.
\end{equation}
\paragraph*{klassisch}
$x(t_0), p(t_0) = \sqrt{2m E}$
%\begin{figure}[h]
%\includegraphics{pdf/II/00-02-01.pdf}
%\end{figure}
\begin{figure}[H] \centering
\includegraphics{pdf/II/00-02-01.pdf}
\end{figure}
\paragraph*{quantal}
\subparagraph*{Schritt 1} Stationäre Zustände
@ -104,9 +104,9 @@ Lösung:
\subparagraph*{Fazit}
\begin{enumerate}
\item Energieeigenwerte sind quantisiert.
%\begin{figure}[h]
%\includegraphics{pdf/II/00-02-02.pdf}
%\end{figure}
\begin{figure}[H] \centering
\includegraphics{pdf/II/00-02-02.pdf}
\end{figure}
\item Eigenfunktionen $\phi_n(x)$ bilden ein vollständig normiertes Basissystem.
\begin{equation}
\phi_n = \frac{1}{\sqrt{a}} \left\lbrace \begin{array}{ll} \cos(k_n x) & n\text{ grade}\\ \sin(k_n x) & \text{sont.} \end{array} \right.
@ -116,11 +116,11 @@ Lösung:
\sum_{n=0}^{\infty} \phi_n(x) \phi_n(x') &= \delta(x - x')
\end{align}
d.h. jede Funktion $\psi(x)$ kann entwickelt werden in dieser Basis $\psi(x) = \sum_{n=0}^{\infty} c_n \phi_n(x)$.
%\begin{figure}[h]
%\includegraphics{pdf/II/00-02-03.pdf}
%\caption{Skizze der Eigenfunktionen}
%\end{figure}
\end{enumerate}
\begin{figure}[H] \centering
\includegraphics{pdf/II/00-02-03.pdf}
\caption{Skizze der Eigenfunktionen}
\end{figure}
\paragraph{Schritt 2} Dynamik\\
Sei nun $\psi(x, t)$ beliebig gegeben durch
\begin{equation}
@ -147,9 +147,9 @@ und damit
\end{align}
($U(x,t;x',t_0)$ ... Zeitentwicklungsoperator in Ortsdarstellung)
\section{Beispiel 2: $\delta$-Potentialtopf}
%\begin{figure}[h]
%\includegraphics{pdf/II/00-03-00.pdf}
%\end{figure}
\begin{figure}[H] \centering
\includegraphics{pdf/II/00-03-00.pdf}
\end{figure}
Mit
\begin{equation}
V(x) = -\alpha \delta(x)
@ -186,9 +186,9 @@ Aus der Stetigkeit von $\phi$ folgt:
\rightarrow E &= -\frac{\hbar^2}{2m} \left( \frac{2m}{\hbar} \right)^2 \alpha^2
\end{align}
$\rightarrow$ Ein gebundener Zustand.
%\begin{figure}[h]
%\includegraphics{pdf/II/00-03-01.pdf}
%\end{figure}
\begin{figure}[H] \centering
\includegraphics{pdf/II/00-03-01.pdf}
\end{figure}
\subparagraph*{Normierung}
\begin{equation}
\phi_0(x) = \frac{1}{\sqrt{K}} e^{-K \abs{x}}

View File

@ -55,12 +55,8 @@ $\ket{\psi(t_0)}$ gegeben als $\psi(x,t_0) = \braket{x}{\psi(t_0)}$. Gesucht: $\
\end{align}
$\rightarrow$ Matrixelemente des Zeitentwicklungsoperators in Ortsdarstellung
\subsection*{Analogie: Diffusion}
Sei $c(x, t)$ die Dichte der blauen Tinte.
%\begin{figure}[h]
%\includegraphics{8-001.pdf}
%\caption{$c(x,t_0)$}
%\end{figure}
\paragraph*{Analogie: Diffusion}
Sei $c(x, t)$ die Dichte der blauen Tinte (siehe Abbildung \ref{diffusionImg}).\\
Diffusionsgleichung:
\begin{equation}
\partial_t c(x, t) = D \partial_x^2 c(x, t)
@ -74,11 +70,17 @@ QM:
i\hbar \partial_t \psi(x,t) &= -\frac{\hbar^2}{2m} \partial_x^2 \psi(x,t)\\
\partial_t \psi(x,t) &= i \frac{\hbar}{2m} \partial_x^2 \psi(x,t)
\end{align}
\begin{figure}[H] \centering
\includegraphics{pdf/II/02-02-00.pdf}
\caption{$c(x,t_0)$}
\label{diffusionImg}
\end{figure}
\section{Gauss'sches Wellenpacket}
%\begin{figure}[h]
%\includegraphics{8-002.pdf}
%\caption{$\abs{\psi^2(x)}$ lokalisiert um die Null mit Breite $~\Delta$}
%\end{figure}
\begin{figure}[H] \centering
\includegraphics{pdf/II/02-03-00.pdf}
\caption{$\abs{\psi^2(x)}$ lokalisiert um die Null mit Breite $~\Delta$}
\end{figure}
\begin{equation}
\psi(x',0) = \frac{1}{(\pi \Delta^2)^{\frac{1}{4}}}
\end{equation}
@ -103,10 +105,9 @@ Also ergibt sich für $\rho(p)$
\begin{equation}
\rho(p) = \frac{\Delta}{\pi^\frac{1}{2} \hbar} e^\frac{-(p - p_0)^2}{\hbar^2 \Delta^{-2}}
\end{equation}
%\begin{figure}[h]
%\includegraphics{8-002.pdf}
%\caption{$\abs{\psi^2(x)}$ lokalisiert um die Null mit Breite $~\Delta$}
%\end{figure}
\begin{figure}[H] \centering
\includegraphics{pdf/II/02-03-01.pdf}
\end{figure}
\paragraph*{Dispersion, Unschärfe}
\begin{align}
(\Delta x)_\ket{\psi(0)} &= \sqrt{<x^2> - <x>^2} = \sqrt{\dirac{\psi(0)}{\hat{x}^2}{\psi(0)}}\\
@ -127,10 +128,9 @@ für Gauss'sches Wellenpacket ist Gleichheit erreicht.
\begin{equation}
\rho(x,t) = \abs{\psi(x,t)}^2
\end{equation}
%\begin{figure}[h]
%\includegraphics{8-002.pdf}
%\caption{$\abs{\psi^2(x)}$ lokalisiert um die Null mit Breite $~\Delta$}
%\end{figure}
\begin{figure}[H] \centering
\includegraphics{pdf/II/02-03-02.pdf}
\end{figure}
\begin{equation}
\Delta(t) = \Delta^{(0)} \sqrt{1 + \frac{\hbar^2 t^2}{m^2 \Delta^4}}
\end{equation}

View File

@ -25,9 +25,9 @@ der Wahscheinlichkeitsstromdichte (``Kontinuitätsgleichung''; gilt für jede Er
\end{align}
\section{Streuung an der Potentialstufe}
%\begin{figure}[h]
%\includegraphics{pdf/II/03-02-00.pdf}
%\end{figure}
\begin{figure}[H] \centering
\includegraphics{pdf/II/03-02-00.pdf}
\end{figure}
\paragraph*{klassisch}
\subparagraph*{Fall 1} $E > V_0$
\begin{align}
@ -104,7 +104,7 @@ Strom rechts: $x > 0$
\begin{align}
j(x > 0) &= \frac{\hbar}{m} \im{\diffPs{x} \phi(x > 0) \phi(x > 0)}\\
&= \frac{\hbar}{m} q C^2\\
&= \frac{\hbar}{m} q \sbk{\frac{2k}{k + q}}^2
&= \frac{\hbar}{m} q \sbk{\frac{2k}{k + q}}^2\\
&\equiv j_T \equiv T j_I
\end{align}
mit dem Reflexionskoeffizient
@ -119,9 +119,9 @@ für die gilt:
\begin{equation}
\boxed{R + T = 1}
\end{equation}
%\begin{figure}[h]
%\includegraphics{pdf/II/03-02-01.pdf}
%\end{figure}
\begin{figure}[H] \centering
\includegraphics{pdf/II/03-02-01.pdf}
\end{figure}
Zusammenfassung:\\
Auch für $E > V_0$ wird ein Teil reflektiert!
@ -156,16 +156,16 @@ Wellenfunktion für $x > 0$
\phi(x) &= C e^{-\kappa x}\\[15pt]
\rho(x) &= \abs{\phi(x)}^2 = C C^* e^{-2 \kappa x} \neq 0
\end{align}
%\begin{figure}[h]
%\includegraphics{pdf/II/03-02-00.pdf}
%\caption{das Teilchen dringt in die Potentialstufe ein}
%\end{figure}
\begin{figure}[H] \centering
\includegraphics{pdf/II/03-02-02.pdf}
\caption{das Teilchen dringt in die Potentialstufe ein}
\end{figure}
\section{Potentialtopf}
%\begin{figure}[h]
%\includegraphics{pdf/II/03-03-00.pdf}
%\caption{gebundene Zustände $0 > E > -\abs{V_0}$}
%\end{figure}
\begin{figure}[H] \centering
\includegraphics{pdf/II/03-03-00.pdf}
\caption{gebundene Zustände $0 > E > -\abs{V_0}$}
\end{figure}
\paragraph*{symmetrische Lösung}
\begin{align}
\abs{x} < a: ~ \phi(x) &= A \cos(q x)\\
@ -182,18 +182,18 @@ teile \ref{eqn01} durch \ref{eqn00}:
\begin{equation}
\tan(q a) = \frac{\kappa}{q} = \frac{\sqrt{\frac{2m a^2 \abs{V_0}}{\hbar^2} - (q a)^2}}{q a}
\end{equation}
%\begin{figure}[h]
%\includegraphics{pdf/II/03-03-01.pdf}
%\end{figure}
\begin{figure}[H] \centering
\includegraphics{pdf/II/03-03-01.pdf}
\end{figure}
\begin{itemize}
\item endlich viele diskrete $q$-Werte d.h. $E$-Werte mit Lösung
\item es gibt mindestens eine Lösung
\end{itemize}
für $\frac{2m a^2 \abs{V_0}}{\hbar^2} < \pi^2$ existiert nur eine Lösung
\subparagraph*{Grundzustand $\phi_0$}
%\begin{figure}[h]
%\includegraphics{pdf/II/03-03-02.pdf}
%\end{figure}
\begin{figure}[H] \centering
\includegraphics{pdf/II/03-03-02.pdf}
\end{figure}
\begin{equation}
\phi_0(x) = \left\lbrace \begin{array}{ll} A \cos(q_0) & \abs{x} < a\\ B e^{-\kappa x} & \abs{x} \geq a \end{array} \right.
\end{equation}
@ -210,6 +210,6 @@ wie oben:
\end{equation}
gibt es nur falls $\frac{2 m a^2 \abs{V_0}}{\hbar^2} > \frac{\pi^2}{4}$
\subparagraph*{Spektrum}
%\begin{figure}[h]
%\includegraphics{pdf/II/03-03-03.pdf}
%\end{figure}
\begin{figure}[H] \centering
\includegraphics{pdf/II/03-03-03.pdf}
\end{figure}

View File

@ -34,7 +34,7 @@ Definiere den Paritätsoperator $\Pi$ als:
\begin{equation}
\Pi \ket{x} \equiv \ket{-x} ~\left[~ \neq -\ket{x} ~\right]
\end{equation}
%\begin{figure}[h]
%\begin{figure}[H] \centering
%\includegraphics{pdf/II/04-02-00.pdf}
%\caption{Beispiel für $\Pi$}
%\end{figure}
@ -94,7 +94,7 @@ Was ist $[H, \Pi]$ ?
\section{Translationsoperator periodisches Potential\\und Bloch Theorem}
\paragraph{Definition} Translationoperator
%\begin{figure}[h]
%\begin{figure}[H] \centering
%\includegraphics{pdf/II/04-03-00.pdf}
%\end{figure}
\begin{align}
@ -118,7 +118,7 @@ mit $\phi(x)$, der Eigenfunktion zu
x_a \equiv e^{-i \kappa a}
\end{equation}
(mit $\kappa$ beliebig reell)
%\begin{figure}[h]
%\begin{figure}[H] \centering
%\includegraphics{pdf/II/04-03-01.pdf}
%\caption{Periodisches Potential}
%\end{figure}
@ -146,7 +146,7 @@ d.h. SG im Intervall $[0, a]$ lösen mit Randbedingung:
\end{equation}
\section{Bandstruktur im Beispiel ``Dirac-Kamm''}
%\begin{figure}[h]
%\begin{figure}[H] \centering
%\includegraphics{pdf/II/04-04-00.pdf}
%\end{figure}
\begin{equation}
@ -178,7 +178,7 @@ Lösung falls $\det M = 0$ mit
\begin{equation}
\cos(\kappa A) = \cos(k a) + \frac{m \alpha a}{\hbar^2} \frac{\sin(k a)}{k a}
\end{equation}
%\begin{figure}[h]
%\begin{figure}[H] \centering
%\includegraphics{pdf/II/04-04-01.pdf}
%\end{figure}
in $z$ ist erlaubt:

View File

@ -68,7 +68,7 @@ eingesetzt in $H$:
\begin{equation}
0 \leq \norm{\aDs \ket{\nu}}^2 = \braket{\nu}{\aCr \aDs \nu} = \nu \underbrace{\braket{\nu}{\nu}}_{\geq 0}
\end{equation}
%\begin{figure}[h]
%\begin{figure}[H] \centering
%\includegraphics{pdf/II/05-01-00.pdf}
%\end{figure}
Die obige Ungleichung wäre nach mehrfacher Anwendung von $\aDs \ket{\nu}$ verletzt wenn anfänglich $\nu$ keine ganze positive Zahl ist.
@ -90,7 +90,7 @@ Daraus ergibt sich das Spektrum von $\nOp$:
\begin{equation}
\nOp \ket{n} = n \ket{n} \text{ mit } n \in \setZ^+_0
\end{equation}
%\begin{figure}[h]
%\begin{figure}[H] \centering
%\includegraphics{pdf/II/05-01-01.pdf}
%\end{figure}
und das Spektrum von $H$:
@ -232,7 +232,7 @@ Normierung:
\begin{equation}
\intgr{-\infty}{+\infty}{\phi_0(x) \phi_0^*(x)}{x} \stackrel{!}{=} 1 ~ \rightarrow ~ c = \frac{1}{\pi^\frac{1}{4}}
\end{equation}
%\begin{figure}[h]
%\begin{figure}[H] \centering
%\includegraphics{pdf/II/05-02-00.pdf}
%\end{figure}
\paragraph*{Angeregte Zustände}