[vorlesung] kapitel II.3 fertig (bis auf Bilder)

This commit is contained in:
Oliver Groß 2008-07-01 12:17:48 +02:00
parent 23b8735447
commit 5b83624737

View File

@ -100,3 +100,116 @@ mit
j_I &= \frac{\hbar k}{m} &\text{einfallend}\\
j_R &= \frac{\hbar}{m} k \left( \frac{k - q}{k + q} \right)^2 \equiv R j_I &\text{reflectiert}
\end{align}
Strom rechts: $x > 0$
\begin{align}
j(x > 0) &= \frac{\hbar}{m} \im{\diffPs{x} \phi(x > 0) \phi(x > 0)}\\
&= \frac{\hbar}{m} q C^2\\
&= \frac{\hbar}{m} q \sbk{\frac{2k}{k + q}}^2
&\equiv j_T \equiv T j_I
\end{align}
mit dem Reflexionskoeffizient
\begin{equation}
R \equiv \frac{j_R}{j_I} = \left(\frac{k - q}{k + q}\right)^2
\end{equation}
und dem Transmissionskoeffizient
\begin{equation}
T \equiv \frac{j_T}{j_I} = \frac{q}{k} \left( \frac{2k}{k + q} \right)^2
\end{equation}
für die gilt:
\begin{equation}
\boxed{R + T = 1}
\end{equation}
%\begin{figure}[h]
%\includegraphics{pdf/II/03-02-01.pdf}
%\end{figure}
Zusammenfassung:\\
Auch für $E > V_0$ wird ein Teil reflektiert!
\subparagraph*{Fall 2} $0 < E < V_0$\\
links: wie oben\\[15pt]
rechts:
\begin{align}
\diffPs{x}^2 \phi(x) &= 2m \frac{V_0 - E}{\hbar^2} \phi(x)\\
\phi(x) &= C e^{-\kappa x} + D e^{\kappa x}
\end{align}
mit
\begin{equation}
\kappa \equiv \sqrt{\frac{2m (V_0 - E)}{\hbar^2}}; ~ D \stackrel{!}{=} 0 \text{ (explodiert für } x \rightarrow +\infty \text{)}
\end{equation}
Stetigkeit:
\begin{align}
A + B &= C\\[15pt]
\diffPs{x} \phi(x) \cdot i k (A - B) &= -C \kappa\\[15pt]
A &= 1\\
\rightarrow C &= \frac{2k}{k + i \kappa}\\
B &= \frac{k - i \kappa}{k + i \kappa}
\end{align}
transmittierter Strom:
\begin{align}
j_T = j(x > 0) &= \frac{\hbar}{m} \im{\diffPs{x}\phi(x > 0) ~ \phi^*(x > 0)}\\
&= \frac{\hbar}{m} \im{\frac{(-\kappa) 2 k}{k + i\kappa} \cdot \frac{2k}{k i \kappa} e^{-2 \kappa x}}\\
&=0\\[15pt]
j_R &= j_I
\end{align}
Wellenfunktion für $x > 0$
\begin{align}
\phi(x) &= C e^{-\kappa x}\\[15pt]
\rho(x) &= \abs{\phi(x)}^2 = C C^* e^{-2 \kappa x} \neq 0
\end{align}
%\begin{figure}[h]
%\includegraphics{pdf/II/03-02-00.pdf}
%\caption{das Teilchen dringt in die Potentialstufe ein}
%\end{figure}
\section{Potentialtopf}
%\begin{figure}[h]
%\includegraphics{pdf/II/03-03-00.pdf}
%\caption{gebundene Zustände $0 > E > -\abs{V_0}$}
%\end{figure}
\paragraph*{symmetrische Lösung}
\begin{align}
\abs{x} < a: ~ \phi(x) &= A \cos(q x)\\
q &= \frac{2m (E + \abs{V_0})}{\hbar^3}\\
\abs{x} > a: ~ \phi(x) &= B e^{-\kappa \abs{x}}\\
\kappa^2 &= \frac{2m}{\hbar^2} \abs{E}
\end{align}
Stetigkeit:
\begin{align}
A \cos(q a) &= B e^{-\kappa a} \label{eqn00}\\
\text{von } \diffPs{x}\phi(0) ~ \rightarrow -A q \sin(q a) &= -\kappa B e^{-\kappa a} \label{eqn01}
\end{align}
teile \ref{eqn01} durch \ref{eqn00}:
\begin{equation}
\tan(q a) = \frac{\kappa}{q} = \frac{\sqrt{\frac{2m a^2 \abs{V_0}}{\hbar^2} - (q a)^2}}{q a}
\end{equation}
%\begin{figure}[h]
%\includegraphics{pdf/II/03-03-01.pdf}
%\end{figure}
\begin{itemize}
\item endlich viele diskrete $q$-Werte d.h. $E$-Werte mit Lösung
\item es gibt mindestens eine Lösung
\end{itemize}
für $\frac{2m a^2 \abs{V_0}}{\hbar^2} < \pi^2$ existiert nur eine Lösung
\subparagraph*{Grundzustand $\phi_0$}
%\begin{figure}[h]
%\includegraphics{pdf/II/03-03-02.pdf}
%\end{figure}
\begin{equation}
\phi_0(x) = \left\lbrace \begin{array}{ll} A \cos(q_0) & \abs{x} < a\\ B e^{-\kappa x} & \abs{x} \geq a \end{array} \right.
\end{equation}
$A$, $B$ über Stetigkeit und Normierung berechnen
\paragraph*{asymmetrische Lösung}
\begin{align}
\abs{x} < a: ~ \phi(x) &= A \sin(q x)\\
\abs{x} > a: ~ \phi(x) &= \sign(x) e^{-\abs{\kappa} x}
\end{align}
wie oben:
\begin{equation}
\tan(q a) = -\frac{q a}{\sqrt{\frac{2 m a^2 \abs{V_0}}{\hbar^2} - q a}}
\end{equation}
gibt es nur falls $\frac{2 m a^2 \abs{V_0}}{\hbar^2} > \frac{\pi^2}{4}$
\subparagraph*{Spektrum}
%\begin{figure}[h]
%\includegraphics{pdf/II/03-03-03.pdf}
%\end{figure}