Kapitel III 3 und 4 fertig; Fixes in II 1
This commit is contained in:
parent
7e18b6ec95
commit
6bdaa9f93d
@ -146,6 +146,7 @@ $\omega_1 = \Omega$ d.h. $\omega = \omega_0$, d.h. $B_1$-Feld zirkuliert mit der
|
|||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\section{Transformationsverhalten unter Rotationen}
|
\section{Transformationsverhalten unter Rotationen}
|
||||||
|
\label{labelTransfRot}
|
||||||
\subsection*{klassisch}
|
\subsection*{klassisch}
|
||||||
Vektor $\vec{a}$ wird gedreht mit Matrix $R_z(\varepsilon)$ um den Winkel $\varepsilon$ um die $z$-Achse
|
Vektor $\vec{a}$ wird gedreht mit Matrix $R_z(\varepsilon)$ um den Winkel $\varepsilon$ um die $z$-Achse
|
||||||
\begin{align}
|
\begin{align}
|
||||||
|
10
kapII-1.tex
10
kapII-1.tex
@ -61,23 +61,23 @@ Wie verhält sich $\diffT{t} \dirac{\psi}{\hat{p}}{\psi}$ ?
|
|||||||
\end{align}
|
\end{align}
|
||||||
|
|
||||||
\section{Ortsdatsrellung (Analogie zu Spin $\frac{1}{2}$)}
|
\section{Ortsdatsrellung (Analogie zu Spin $\frac{1}{2}$)}
|
||||||
\begin{tabular}{l|c|c}
|
\begin{tabular}{l||c|c}
|
||||||
& Spin & Teilchen \\ \hline\hline
|
& Spin & Teilchen \\ \hline\hline
|
||||||
Basis & $\sigma_z \ket{z\pm} = \pm 1 \ket{z\pm}$ & $\hat{x} \ket{x} = x \ket{x}$ \\ \hline
|
Basis & $\sigma_z \ket{z\pm} = \pm 1 \ket{z\pm}$ & $\hat{x} \ket{x} = x \ket{x}$ \\ \hline
|
||||||
Orthogonalität &
|
Orthogonalität &
|
||||||
$\begin{array}[t]{rl}\braket{z+}{z+} &= 1\\ &= \braket{z-}{z-}\\ \braket{z+}{z-} &= \braket{z-}{z+}\\ &= 0\end{array}$ &
|
$\begin{array}[t]{r@{\,=\,}l}\braket{z+}{z+} & 1\\ &= \braket{z-}{z-}\\ \braket{z+}{z-} & \braket{z-}{z+}\\ & 0\end{array}$ &
|
||||||
$\braket{x'}{x} = \delta(x'-x)$ \\ \hline
|
$\braket{x'}{x} = \delta(x'-x)$ \\ \hline
|
||||||
Zustände in Basis entwickelt & $\begin{array}[t]{rl} \ket{\psi} &= \one \ket{\psi}\\ &= \ket{z+}\braket{z+}{\psi} + \ket{z-}\braket{z-}{\psi} \end{array}$ & $\begin{array}[t]{rl} \ket{\psi} &= \one \ket{\psi}\\ &= \intgr{-\infty}{+\infty}{\ket{x}\underbrace{\braket{x}{\psi}}_{\psi(x)}}{x}\\ &= \intgr{-\infty}{+\infty}{\psi(x) \ket{x}}{x} \end{array}$
|
Zustände in Basis entwickelt & $\begin{array}[t]{r@{\,=\,}l} \ket{\psi} & \one \ket{\psi}\\ & \ket{z+}\braket{z+}{\psi} + \ket{z-}\braket{z-}{\psi} \end{array}$ & $\begin{array}[t]{r@{\,=\,}l} \ket{\psi} & \one \ket{\psi}\\ & \intgr{-\infty}{+\infty}{\ket{x}\underbrace{\braket{x}{\psi}}_{\psi(x)}}{x}\\ & \intgr{-\infty}{+\infty}{\psi(x) \ket{x}}{x} \end{array}$
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
|
|
||||||
\paragraph*{Normierung}
|
\paragraph*{Normierung}
|
||||||
\begin{align}
|
\begin{align}
|
||||||
1 \stackrel{!}{=} \braket{\psi}{\psi} &= \intgr{-\infty}{+\infty}{\psi^* \bra{x}}{x} \intgr{-\infty}{+\infty}{\psi(x') \ket{x'}}{x'}\\
|
1 \stackrel{!}{=} \braket{\psi}{\psi} &= \intgr{-\infty}{+\infty}{\psi^* \bra{x}}{x} \intgr{-\infty}{+\infty}{\psi(x') \ket{x'}}{x'}\\
|
||||||
\intgru{\intgru{\psi(x)\psi(x')\underbrace{\braket{x}{x'}}_{\delta(x-x')}}{x'}}{x}\\
|
&= \intgru{\intgru{\psi(x)\psi(x')\underbrace{\braket{x}{x'}}_{\delta(x-x')}}{x'}}{x}\\
|
||||||
&= \intgru{\psi^*(x)\psi(x)}{x}\\
|
&= \intgru{\psi^*(x)\psi(x)}{x}\\
|
||||||
&= \intgru{(\psi(x))^2}{x}
|
&= \intgru{(\psi(x))^2}{x}
|
||||||
\end{align}
|
\end{align}
|
||||||
$\rightarrow$ Zulässige Zustände haben eine ``Wellenfunktion'', die quadrat-integrabel ist.
|
$\rightarrow$ Zulässige Zustände haben eine ``Wellenfunktion'', die quadrat-integrabel ist.align
|
||||||
|
|
||||||
\paragraph*{Erwartungswert einer Ortsmessung}
|
\paragraph*{Erwartungswert einer Ortsmessung}
|
||||||
\begin{align}
|
\begin{align}
|
||||||
|
@ -1,4 +1,5 @@
|
|||||||
\chapter{Rotationssymetrie im Potential in $d=2$}
|
\chapter{Rotationssymetrie im Potential in $d=2$}
|
||||||
|
\label{labelRotSym2D}
|
||||||
\section{Lösung der stationären Schrödingergleichung durch ``Separation der Variablen''}
|
\section{Lösung der stationären Schrödingergleichung durch ``Separation der Variablen''}
|
||||||
\label{rotSymSGL}
|
\label{rotSymSGL}
|
||||||
Mit den Polarkoordinaten
|
Mit den Polarkoordinaten
|
||||||
|
130
kapIII-3.tex
130
kapIII-3.tex
@ -237,5 +237,133 @@ mit
|
|||||||
\begin{equation}
|
\begin{equation}
|
||||||
m(n_+,n_-) = n_+ - n_-
|
m(n_+,n_-) = n_+ - n_-
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
%TODO...
|
%TODO...
|
||||||
|
Für Rotationsinvarianz gilt:
|
||||||
|
\begin{align}
|
||||||
|
[L_z, p^2] &= 0\\
|
||||||
|
[L_z, r^2] &= 0\\
|
||||||
|
\rightarrow [L_z, V(r)] &= 0
|
||||||
|
\end{align}
|
||||||
|
(gilt analog für $L_x$ und $L_y$)
|
||||||
|
\begin{equation}
|
||||||
|
\rightarrow \left[ \frac{\hat{p}^2}{2m} + V(r), L^2 \right] = 0
|
||||||
|
\end{equation}
|
||||||
|
also vertauschen $H$, $L^2$ und $L-z$ und es existiert eine gemeinsame Eigenbasis $\set{\ket{E\,l,m}}$ mit
|
||||||
|
\begin{align}
|
||||||
|
H \ket{E\,l,m} &= E \ket{E\,l,m}\\
|
||||||
|
L^2 \ket{E\,l,m} &= \hbar^2 l(l+1) \ket{E\,l,m}\\
|
||||||
|
L_z \ket{E\,l,m} &= \hbar m \ket{E\,l,m}
|
||||||
|
\end{align}
|
||||||
|
Sucht man nach dem Spektrum von $H$ so muss man die möglichen $E$-Werte für festes $l$ und $m$ finden.
|
||||||
|
|
||||||
|
\section{Radialgleichung}
|
||||||
|
\paragraph{Ziel} $H \ket{\phi} = E \ket{\phi}$ vereinfachen mit
|
||||||
|
\begin{equation}
|
||||||
|
p^2 = -\frac{\hbar^2}{2\mu} \left[ \diffPs{r}^2 + \frac{2}{r} \diffPs{r} \right] + \frac{\vec{L}^2}{2\mu r^2}
|
||||||
|
\end{equation}
|
||||||
|
\paragraph{Beweis}
|
||||||
|
\begin{align}
|
||||||
|
L^2 &= \levicivita{\alpha,\beta,\gamma} x_\beta p_x \levicivita{\alpha,\mu,\nu} x_\mu p_\nu \\
|
||||||
|
&= \left(\krondelta{\beta,\mu} \krondelta{x,\nu} - \krondelta{\beta,\nu} \krondelta{\gamma,\beta}\right) x_\beta p_\gamma x_\gamma p_\nu \\
|
||||||
|
&= x_\beta \underbrace{p_\gamma x_\beta}_{x_\beta p_\gamma - i\hbar \krondelta{\beta,\gamma}} - x_\beta p_\gamma \underbrace{x_\gamma p_\beta}_{p_\beta x_\gamma + i\hbar \krondelta{\gamma,\beta}} \\
|
||||||
|
&= x^2 p^2 - i\hbar x p - \left( (x \cdot p)\underbrace{p \cdot x}_{x \cdot p - 3i\hbar} + i\hbar (x \cdot p) \right) \\
|
||||||
|
&= x^2 p^2 - (x \cdot p)^2 + i \hbar x p \label{stern00}
|
||||||
|
\end{align}
|
||||||
|
mit
|
||||||
|
\begin{equation}
|
||||||
|
\dirac{r,\theta,\phi}{x^2 p^2}{\psi} = r^2 \dirac{r,\theta,\phi}{\hat{p}^2}{\psi}
|
||||||
|
\end{equation}
|
||||||
|
und
|
||||||
|
\begin{align}
|
||||||
|
\dirac{r,\theta,\phi}{\hat{x} p}{\psi} &= \vec{x} (-i\hbar \vec{\nabla}) \psi(r,\theta,\phi) \\
|
||||||
|
&= -i\hbar r \diffPs{r} \psi(r,\theta,\phi)
|
||||||
|
\end{align}
|
||||||
|
daraus wird (\ref{stern00})
|
||||||
|
\begin{align}
|
||||||
|
\dirac{r,\theta,\phi}{L^2}{\psi} &= r^2 \cdot 2 \mu \braket{r,\theta,\phi \, H_\text{kin}}{\psi} + \hbar^2 (r\diffPs{r})(r\diffPs{r})\psi(r,\theta,\phi) + \hbar^2(r\diffPs{r})\psi(r,\theta,\phi) \\[15pt]
|
||||||
|
\rightarrow \dirac{r,\theta,\phi}{\underbrace{H_\text{kin} + V(r)}_{H}}{\psi} &\stackrel{!}{=} E \braket{r,\theta,\phi}{\psi}
|
||||||
|
\end{align}
|
||||||
|
für Eigenfunktion
|
||||||
|
\begin{equation}
|
||||||
|
\rightarrow \left( -\frac{\hbar^2}{2\mu} \left( \diffPs{r}^2 + \frac{2}{r} \diffPs{r} \right) + \frac{L^2}{2\mu r^2} + V(r) \right) \psi
|
||||||
|
\end{equation}
|
||||||
|
mit
|
||||||
|
\begin{equation}
|
||||||
|
\ket{\psi} = \ket{E\,l,m}
|
||||||
|
\end{equation}
|
||||||
|
ist
|
||||||
|
\begin{align}
|
||||||
|
\psi(r,\theta,\phi) &= R_E(r) y_{l,m}(\theta,\phi)\\
|
||||||
|
\rightarrow \left( -\frac{\hbar^2}{2\mu} \left( \diffPs{r}^2 + \frac{2}{r} \diffPs{r} - \frac{l(l+1)}{r^2} \right) + V(r) \right) R_E(r) &= E R_E(r)
|
||||||
|
\end{align}
|
||||||
|
unabhängig von $m$ (nur abhängig von Gesammtdrehimpuls)!
|
||||||
|
Als Vergleich: Rotation in 2D:
|
||||||
|
\begin{equation}
|
||||||
|
\left( -\frac{\hbar^2}{2\mu} \left( \diffPs{\rho}^2 + \frac{1}{\rho} \diffPs{\rho} - \frac{m^2}{\rho^2} \right) + V(\rho) \right) R_E(\rho) = E R_E(\rho)
|
||||||
|
\end{equation}
|
||||||
|
Nun ist
|
||||||
|
\begin{align}
|
||||||
|
R_E(r) &= \frac{u(r)}{r}\\
|
||||||
|
\diffPs{r}R_E(r) &= \frac{\diffPs{r}u(r)}{r} - \frac{u(r)}{r^2}\\
|
||||||
|
\diffPs{r}^2R_E(r) &= \frac{\diffPs{r}^2u(r)}{r} - \frac{2\diffPs{r}u(r)}{r^2} + \frac{2u}{r^3}
|
||||||
|
\end{align}
|
||||||
|
einsetzen:
|
||||||
|
\begin{equation}
|
||||||
|
\left( -\frac{\hbar^2}{2\mu} \diffPs{r}^2 + \underbrace{\frac{\hbar^2}{2\mu} \frac{l(l+1)}{r^2} + V(r)}_{V_\text{eff}(r)} \right) u(r) = E u(r) \text{ für } r \geq 0
|
||||||
|
\end{equation}
|
||||||
|
gleicht formal der eindimensionalen Schrödingergleichung mit effektivem Potential. Aber $r \geq 0$ beachten (mit $u(r = 0) = 0$)!
|
||||||
|
|
||||||
|
\section{Coulomb-Problem und Wasserstoffatom}
|
||||||
|
Potential:
|
||||||
|
\begin{equation}
|
||||||
|
V(r) = -\frac{Z e^2}{r}; ~~ r = a_0 y
|
||||||
|
\end{equation}
|
||||||
|
mit
|
||||||
|
\begin{equation}
|
||||||
|
a_0 = \frac{\hbar}{\mu e^2} \text{ (Bohr'scher Radius)}; ~~ E = \frac{e^2}{a_0} \varepsilon
|
||||||
|
\end{equation}
|
||||||
|
eingesetzt in die stationre Schrödingergleichung
|
||||||
|
\begin{equation}
|
||||||
|
\left( \diffPs{y}^2 - \frac{l(l+1)}{y^2} + \frac{2Z}{y} + \varepsilon \right) u(y) = 0
|
||||||
|
\end{equation}
|
||||||
|
\paragraph{Lösungsstrategie 1} Asymptotik bestimmen, abspalten, Potenzreihenansatz (Tailorreihe!) einsetzen, Konvergenz durch Abbruch führt auf quantisierte Energie (steht in jedem Buch).
|
||||||
|
\paragraph{Lösungsstrategie 2} Abbildung auf harmonischen Oszillator in 2D:\\
|
||||||
|
dazu:
|
||||||
|
\begin{align}
|
||||||
|
x^2 &= 2 \lambda y\\
|
||||||
|
x \text{ d}x &= \lambda \text{ d}y\\
|
||||||
|
\rightarrow \diffPfrac{}{y} = \frac{\lambda}{x} \diffPfrac{}{x}
|
||||||
|
\end{align}
|
||||||
|
einsetzen:
|
||||||
|
\begin{equation}
|
||||||
|
\left( \diffPs{x}^2 - \frac{(2l+1)^2 - \frac{1}{4}}{x^2} + \frac{4Z}{\lambda} + \frac{2\varepsilon}{\lambda^2} x2 \right) \frac{u(y)}{\sqrt{x}} = 0
|
||||||
|
\end{equation}
|
||||||
|
Erinnerung an 2D H.O.
|
||||||
|
\begin{equation}
|
||||||
|
\left( \left( \diffPs{\rho}^2 + \frac{1}{\rho} \diffPs{\rho} - \frac{m^2}{\rho^2} \right) -\frac{\mu \omega^2}{\hbar^2} \rho^2 + E \frac{2m}{\hbar^2} \right) R_{n,m}(\rho) = 0
|
||||||
|
\end{equation}
|
||||||
|
mit $q \equiv \sqrt{\frac{u\omega}{\hbar}}\rho$
|
||||||
|
\begin{equation}
|
||||||
|
\left( \diffPs{q}^2 - \frac{m^2 - \frac{1}{4}}{q^2} - q^2 + 2N + 2 \right) \sqrt{\rho} R_{n,m}(\rho) = 0
|
||||||
|
\end{equation}
|
||||||
|
Korrespondenz:
|
||||||
|
\begin{center}
|
||||||
|
\begin{tabular}{c|c}
|
||||||
|
Coulomb & H.O. \\ \hline
|
||||||
|
$(2l+1)^2$ & $m^2$ \\
|
||||||
|
$\frac{4Z}{\lambda}$ & $2N+2$ \\
|
||||||
|
$\frac{2\varepsilon}{\lambda}$ & $-1$
|
||||||
|
\end{tabular}
|
||||||
|
\end{center}
|
||||||
|
Also sind:
|
||||||
|
\begin{equation}
|
||||||
|
\abs{m} = 2l+1 \text{ und } \lambda = \frac{2Z}{N+1} = \frac{2Z}{\abs{m} + 2n_r + 1}
|
||||||
|
\end{equation}
|
||||||
|
Energieeigenwerte:
|
||||||
|
\begin{equation}
|
||||||
|
\varepsilon = -\frac{\lambda^2}{2} = -2Z^2 \frac{1}{(\abs{m} + 2n_r + 1)^2} = -z^2 \frac{1}{(l + n_r + 1)^2}
|
||||||
|
\end{equation}
|
||||||
|
damit das Spektrum:
|
||||||
|
%\begin{figure}[H] \centering
|
||||||
|
%\includegraphics{pdf/III/03-05-00.pdf}
|
||||||
|
%\end{figure}
|
||||||
|
133
kapIII-4.tex
133
kapIII-4.tex
@ -8,7 +8,7 @@ mit
|
|||||||
\begin{equation}
|
\begin{equation}
|
||||||
D(\phi,\vec{n}) = 1 - i\frac{\phi}{\hbar} J_{\vec{n}} + O(\phi^2)
|
D(\phi,\vec{n}) = 1 - i\frac{\phi}{\hbar} J_{\vec{n}} + O(\phi^2)
|
||||||
\end{equation}
|
\end{equation}
|
||||||
In () hatten wir die Relation
|
In (\ref{labelTransfRot}) hatten wir die Relation
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
[J_x,J_y] = i\hbar J_z
|
[J_x,J_y] = i\hbar J_z
|
||||||
\end{equation}
|
\end{equation}
|
||||||
@ -62,3 +62,134 @@ $\beta$-Spektrum ist eingeschränkt wegen:
|
|||||||
\begin{equation}
|
\begin{equation}
|
||||||
0 \leq \dirac{\alpha,\beta}{J_x^2 + J_y^2}{\alpha,\beta} = \dirac{\alpha,\beta}{J^2-J_z^2}{\alpha,\beta} = (\alpha-\beta)^2 \underbrace{\braket{\alpha,\beta}{\alpha,\beta}}_{\geq 0}
|
0 \leq \dirac{\alpha,\beta}{J_x^2 + J_y^2}{\alpha,\beta} = \dirac{\alpha,\beta}{J^2-J_z^2}{\alpha,\beta} = (\alpha-\beta)^2 \underbrace{\braket{\alpha,\beta}{\alpha,\beta}}_{\geq 0}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
Also ist $\alpha \geq \beta^2$ und $\exists \beta_\text{max}$ mit
|
||||||
|
\begin{align}
|
||||||
|
J_+ \ket{\alpha,\beta_\text{max}} &= \ket{\zero} & \left| J_- \right.\\
|
||||||
|
J_- J_+ \ket{\alpha,\beta_\text{max}} &= 0\\
|
||||||
|
\left( J^2 - J_z^2 - \hbar J_z \right) \ket{\alpha,\beta_\text{max}} &= 0\\
|
||||||
|
\alpha - \beta_\text{max}^2 \hbar^2 -\beta_\text{max} \hbar &\stackrel{!}{=} 0\\
|
||||||
|
\rightarrow \alpha = \beta_\text{max} (\beta_\text{max} + \hbar)
|
||||||
|
\end{align}
|
||||||
|
entsprechend:
|
||||||
|
\begin{align}
|
||||||
|
J_- \ket{\alpha,\beta_\text{min}} &= \ket{\zero}\\
|
||||||
|
... \rightarrow \alpha &= \beta_\text{min} (\beta_\text{min} - \hbar)
|
||||||
|
\end{align}
|
||||||
|
Daraus folgt:
|
||||||
|
\begin{equation}
|
||||||
|
\beta_\text{max}^2 + \beta_\text{max} \hbar = \beta_\text{min}^2 + \beta_\text{min} \hbar
|
||||||
|
\end{equation}
|
||||||
|
quadratische Gleichung mit den 2 Lösungen:
|
||||||
|
\begin{align}
|
||||||
|
\beta_\text{max} &= \beta_\text{min} - \hbar &\text{(irrelevant)}\\
|
||||||
|
\beta_\text{max} &= -\beta_\text{min}
|
||||||
|
\end{align}
|
||||||
|
\begin{align}
|
||||||
|
\left( J_+ \right)^k \ket{\alpha,\beta_\text{mix}} &= \const \ket{\alpha,\beta_\text{max}}\\
|
||||||
|
\rightarrow \beta_\text{max} &= \beta_\text{min} + \hbar \cdot k
|
||||||
|
\end{align}
|
||||||
|
daraus ergibt sich mit $k = 0,1,2,...$:
|
||||||
|
\begin{equation}
|
||||||
|
\boxed{\beta_\text{max} = \frac{\hbar}{2} \cdot k}
|
||||||
|
\end{equation}
|
||||||
|
und
|
||||||
|
\begin{equation}
|
||||||
|
\alpha = \beta_\text{max}^2 + \beta_\text{max} \hbar = \hbar^2 \left( \frac{k}{2} + 1 \right) \frac{k}{2}
|
||||||
|
\end{equation}
|
||||||
|
Zusammenfassung:
|
||||||
|
\begin{center}
|
||||||
|
\begin{tabular}{c|c|c|c|c}
|
||||||
|
$\frac{k}{2}$ & $\beta_\text{max}$ & $\alpha$ & $\ket{\alpha,\beta_\text{max}}$ & Anzahl $\ket{\alpha,\beta}$ \\ \hline
|
||||||
|
$0$ & $0$ & $0$ & $\ket{0,0}$ & $1$ \\ \hline
|
||||||
|
$\frac{1}{2}$ & $\frac{1}{2}\hbar$ & $\frac{3}{4}\hbar^2$ & $\ket{\frac{3}{4},\frac{1}{2}}$ & $2$ \\ \hline
|
||||||
|
$1$ & $\hbar$ & $2\hbar^2$ & $\ket{2,1}$ & $3$ \\ \hline
|
||||||
|
$\frac{3}{2}$ & $\frac{3}{2}\hbar$ & $\frac{15}{4}\hbar^2$ & $\ket{\frac{15}{4},\frac{3}{2}}$ & $4$
|
||||||
|
\end{tabular}
|
||||||
|
\end{center}
|
||||||
|
Wir finden halbzahlige Eigenwerte für $J_z$. Aber: in (\ref{labelRotSym2D}) hatten wir gesehen:
|
||||||
|
\begin{equation}
|
||||||
|
J_3 = XP_Y - YP_X
|
||||||
|
\end{equation}
|
||||||
|
hat Eigenwerte $m \hbar= (0,\pm 1, \pm 1, ...) \hbar$.\\
|
||||||
|
Mit der Notation $j \equiv \frac{k}{2}$
|
||||||
|
\begin{align}
|
||||||
|
\alpha &= \hbar^2 j (j + 1)\\
|
||||||
|
\beta &= \hbar m
|
||||||
|
\end{align}
|
||||||
|
und
|
||||||
|
\begin{align}
|
||||||
|
J^2 \ket{j,m} &= \hbar^2 j (j+1) \ket{j,m} & \left(j = \frac{0,1,2,3,...}{2}\right)\\
|
||||||
|
J_z \ket{j,m} &= \hbar m \ket{j,m} & \left(m = -j, -j+1, ..., j\right)
|
||||||
|
\end{align}
|
||||||
|
Matrixelemente:
|
||||||
|
\begin{align}
|
||||||
|
J_\pm \ket{j,m} &= c_+(j,m) \ket{j,m \pm 1}\\
|
||||||
|
\bra{j,m} J_\mp &= c_+^*(j,m) \bra{j,m \pm 1}\\[15pt]
|
||||||
|
\dirac{j,m}{J_- J_+}{j,m} &= \abs{c_+(j,m)}^2 \underbrace{\braket{j,m+1}{j,m+1}}_1\\
|
||||||
|
\dirac{j,m}{J^2 - J_z^2 - \hbar J_z}{j,m} &= \abs{c_+(j,m)}^2\\
|
||||||
|
\rightarrow \hbar^2 \left( j (j+1) - m^2 - m \right) &= \abs{c_+(j,m)}^2\\
|
||||||
|
\rightarrow c_+ &= \hbar \sqrt{j (j+1) - m^2 - m}\\
|
||||||
|
&= \sqrt{(j + m + 1)(j - m)}
|
||||||
|
\end{align}
|
||||||
|
genauso
|
||||||
|
\begin{equation}
|
||||||
|
c_- = \hbar \sqrt{(j - m + 1)(j + m)}
|
||||||
|
\end{equation}
|
||||||
|
Matrixelemente von $J_x$ und $J_y$:
|
||||||
|
\begin{align}
|
||||||
|
\dirac{j',m'}{J_x}{j,m} &= \braket{j',m'}{\frac{J_+ + J_-}{2} - j,m}\\
|
||||||
|
&= \krondelta{j',j} \left\lbrace \krondelta{m',m+1} c_+(j,m) + \krondelta{m'-1,m} c_-(j,m) \right\rbrace
|
||||||
|
\end{align}
|
||||||
|
\definecolor{lgray}{gray}{0.9}
|
||||||
|
\newcommand{\graycell}{\cellcolor{lgray}}
|
||||||
|
\begin{itemize}
|
||||||
|
\item für $J^2 / \hbar^2$
|
||||||
|
\begin{center}
|
||||||
|
\begin{tabular}{c||c|c|c|c|c|c}
|
||||||
|
$j',m' \backslash j,m$ & $(0,0)$ & $(\frac{1}{2},\frac{1}{2})$ & $(\frac{1}{2},-\frac{1}{2})$ & $(1,1)$ & $(1,0)$ & $(1,-1)$ \\ \hline\hline
|
||||||
|
$(0,0)$ & $0$ \graycell & $0$ & $0$ & $0$ & $0$ & $0$ \\ \hline
|
||||||
|
$(\frac{1}{2},\frac{1}{2})$ & $0$ & $\frac{3}{4}$ \graycell & $0$ \graycell & $0$ & $0$ & $0$ \\ \hline
|
||||||
|
$(\frac{1}{2},-\frac{1}{2})$ & $0$ & $0$ \graycell & $\frac{3}{4}$ \graycell & $0$ & $0$ & $0$ \\ \hline
|
||||||
|
$(1,1)$ & $0$ & $0$ & $0$ & $2$ \graycell & $0$ \graycell & $0$ \graycell \\ \hline
|
||||||
|
$(1,0)$ & $0$ & $0$ & $0$ & $0$ \graycell & $2$ \graycell & $0$ \graycell \\ \hline
|
||||||
|
$(1,-1)$ & $0$ & $0$ & $0$ & $0$ \graycell & $0$ \graycell & $2$ \graycell \\
|
||||||
|
\end{tabular}
|
||||||
|
\end{center}
|
||||||
|
\item für $J_z / \hbar$
|
||||||
|
\begin{center}
|
||||||
|
\begin{tabular}{c||c|c|c|c|c|c}
|
||||||
|
$j',m' \backslash j,m$ & $(0,0)$ & $(\frac{1}{2},\frac{1}{2})$ & $(\frac{1}{2},-\frac{1}{2})$ & $(1,1)$ & $(1,0)$ & $(1,-1)$ \\ \hline\hline
|
||||||
|
$(0,0)$ & $0$ \graycell & $0$ & $0$ & $0$ & $0$ & $0$ \\ \hline
|
||||||
|
$(\frac{1}{2},\frac{1}{2})$ & $0$ & $\frac{1}{2}$ \graycell & $0$ \graycell & $0$ & $0$ & $0$ \\ \hline
|
||||||
|
$(\frac{1}{2},-\frac{1}{2})$ & $0$ & $0$ \graycell & $-\frac{1}{2}$ \graycell & $0$ & $0$ & $0$ \\ \hline
|
||||||
|
$(1,1)$ & $0$ & $0$ & $0$ & $1$ \graycell & $0$ \graycell & $0$ \graycell \\ \hline
|
||||||
|
$(1,0)$ & $0$ & $0$ & $0$ & $0$ \graycell & $0$ \graycell & $0$ \graycell \\ \hline
|
||||||
|
$(1,-1)$ & $0$ & $0$ & $0$ & $0$ \graycell & $0$ \graycell & $1$ \graycell \\
|
||||||
|
\end{tabular}
|
||||||
|
\end{center}
|
||||||
|
\item für $J_x / \hbar$
|
||||||
|
\begin{center}
|
||||||
|
\begin{tabular}{c||c|c|c|c|c|c}
|
||||||
|
$j',m' \backslash j,m$ & $(0,0)$ & $(\frac{1}{2},\frac{1}{2})$ & $(\frac{1}{2},-\frac{1}{2})$ & $(1,1)$ & $(1,0)$ & $(1,-1)$ \\ \hline\hline
|
||||||
|
$(0,0)$ & $0$ \graycell & $0$ & $0$ & $0$ & $0$ & $0$ \\ \hline
|
||||||
|
$(\frac{1}{2},\frac{1}{2})$ & $0$ & $0$ \graycell & $\frac{1}{2}$ \graycell & $0$ & $0$ & $0$ \\ \hline
|
||||||
|
$(\frac{1}{2},-\frac{1}{2})$ & $0$ & $\frac{1}{2}$ \graycell & $0$ \graycell & $0$ & $0$ & $0$ \\ \hline
|
||||||
|
$(1,1)$ & $0$ & $0$ & $0$ & $1$ \graycell & $0$ \graycell & $0$ \graycell \\ \hline
|
||||||
|
$(1,0)$ & $0$ & $0$ & $0$ & $0$ \graycell & $0$ \graycell & $0$ \graycell \\ \hline
|
||||||
|
$(1,-1)$ & $0$ & $0$ & $0$ & $0$ \graycell & $0$ \graycell & $1$ \graycell \\
|
||||||
|
\end{tabular}
|
||||||
|
\end{center}
|
||||||
|
\item für $J_y / \hbar$
|
||||||
|
\begin{center}
|
||||||
|
\begin{tabular}{c||c|c|c|c|c|c}
|
||||||
|
$j',m' \backslash j,m$ & $(0,0)$ & $(\frac{1}{2},\frac{1}{2})$ & $(\frac{1}{2},-\frac{1}{2})$ & $(1,1)$ & $(1,0)$ & $(1,-1)$ \\ \hline\hline
|
||||||
|
$(0,0)$ & $0$ \graycell & $0$ & $0$ & $0$ & $0$ & $0$ \\ \hline
|
||||||
|
$(\frac{1}{2},\frac{1}{2})$ & $0$ & $0$ \graycell & $-\frac{i}{2}$ \graycell & $0$ & $0$ & $0$ \\ \hline
|
||||||
|
$(\frac{1}{2},-\frac{1}{2})$ & $0$ & $\frac{i}{2}$ \graycell & $0$ \graycell & $0$ & $0$ & $0$ \\ \hline
|
||||||
|
$(1,1)$ & $0$ & $0$ & $0$ & $1$ \graycell & $0$ \graycell & $0$ \graycell \\ \hline
|
||||||
|
$(1,0)$ & $0$ & $0$ & $0$ & $0$ \graycell & $0$ \graycell & $0$ \graycell \\ \hline
|
||||||
|
$(1,-1)$ & $0$ & $0$ & $0$ & $0$ \graycell & $0$ \graycell & $1$ \graycell \\
|
||||||
|
\end{tabular}
|
||||||
|
\end{center}
|
||||||
|
\end{itemize}
|
||||||
|
Erkennbar ist hier jeweils eine Blockstruktur!
|
||||||
|
4
math.tex
4
math.tex
@ -37,8 +37,8 @@
|
|||||||
\newcommand{\diffTfrac}[2]{\frac{\text{d} #1}{\text{d} #2}}
|
\newcommand{\diffTfrac}[2]{\frac{\text{d} #1}{\text{d} #2}}
|
||||||
\newcommand{\diffTm}[3]{\diffTfrac{^{#1} #2}{#3^{#1}}}
|
\newcommand{\diffTm}[3]{\diffTfrac{^{#1} #2}{#3^{#1}}}
|
||||||
\newcommand{\diffPfrac}[2]{\frac{\partial #1}{\partial #2}}
|
\newcommand{\diffPfrac}[2]{\frac{\partial #1}{\partial #2}}
|
||||||
\newcommand{\intgr}[4]{\int_{#1}^{#2} #3 ~\text{ d}#4}
|
\newcommand{\intgr}[4]{\int_{#1}^{#2} #3 \,\text{d}#4}
|
||||||
\newcommand{\intgru}[2]{\int #1 ~\text{ d}#2}
|
\newcommand{\intgru}[2]{\int #1 \,\text{d}#2}
|
||||||
\newcommand{\intgrinf}[2]{\intgr{-\infty}{+\infty}{#1}{#2}}
|
\newcommand{\intgrinf}[2]{\intgr{-\infty}{+\infty}{#1}{#2}}
|
||||||
|
|
||||||
\newcommand{\sbk}[1]{\left( #1 \right)}
|
\newcommand{\sbk}[1]{\left( #1 \right)}
|
||||||
|
55
theo2.kilepr
55
theo2.kilepr
@ -3,7 +3,7 @@ img_extIsRegExp=false
|
|||||||
img_extensions=.eps .jpg .jpeg .png .pdf .ps .fig .gif
|
img_extensions=.eps .jpg .jpeg .png .pdf .ps .fig .gif
|
||||||
kileprversion=2
|
kileprversion=2
|
||||||
kileversion=2.0
|
kileversion=2.0
|
||||||
lastDocument=kapIII-4.tex
|
lastDocument=kapIV-1.tex
|
||||||
masterDocument=
|
masterDocument=
|
||||||
name=Theo2
|
name=Theo2
|
||||||
pkg_extIsRegExp=false
|
pkg_extIsRegExp=false
|
||||||
@ -65,7 +65,7 @@ archive=true
|
|||||||
column=7
|
column=7
|
||||||
encoding=UTF-8
|
encoding=UTF-8
|
||||||
highlight=LaTeX
|
highlight=LaTeX
|
||||||
line=82
|
line=148
|
||||||
open=false
|
open=false
|
||||||
order=6
|
order=6
|
||||||
|
|
||||||
@ -84,15 +84,15 @@ column=12
|
|||||||
encoding=UTF-8
|
encoding=UTF-8
|
||||||
highlight=LaTeX
|
highlight=LaTeX
|
||||||
line=122
|
line=122
|
||||||
open=true
|
open=false
|
||||||
order=1
|
order=1
|
||||||
|
|
||||||
[item:kapII-1.tex]
|
[item:kapII-1.tex]
|
||||||
archive=true
|
archive=true
|
||||||
column=6
|
column=113
|
||||||
encoding=
|
encoding=UTF-8
|
||||||
highlight=LaTeX
|
highlight=LaTeX
|
||||||
line=110
|
line=67
|
||||||
open=false
|
open=false
|
||||||
order=-1
|
order=-1
|
||||||
|
|
||||||
@ -120,7 +120,7 @@ column=13
|
|||||||
encoding=UTF-8
|
encoding=UTF-8
|
||||||
highlight=LaTeX
|
highlight=LaTeX
|
||||||
line=39
|
line=39
|
||||||
open=true
|
open=false
|
||||||
order=2
|
order=2
|
||||||
|
|
||||||
[item:kapII-5.tex]
|
[item:kapII-5.tex]
|
||||||
@ -129,7 +129,7 @@ column=29
|
|||||||
encoding=UTF-8
|
encoding=UTF-8
|
||||||
highlight=LaTeX
|
highlight=LaTeX
|
||||||
line=92
|
line=92
|
||||||
open=true
|
open=false
|
||||||
order=3
|
order=3
|
||||||
|
|
||||||
[item:kapIII-0.tex]
|
[item:kapIII-0.tex]
|
||||||
@ -138,7 +138,7 @@ column=8
|
|||||||
encoding=UTF-8
|
encoding=UTF-8
|
||||||
highlight=LaTeX
|
highlight=LaTeX
|
||||||
line=0
|
line=0
|
||||||
open=true
|
open=false
|
||||||
order=4
|
order=4
|
||||||
|
|
||||||
[item:kapIII-1.tex]
|
[item:kapIII-1.tex]
|
||||||
@ -147,42 +147,51 @@ column=15
|
|||||||
encoding=UTF-8
|
encoding=UTF-8
|
||||||
highlight=LaTeX
|
highlight=LaTeX
|
||||||
line=39
|
line=39
|
||||||
open=true
|
open=false
|
||||||
order=5
|
order=5
|
||||||
|
|
||||||
[item:kapIII-2.tex]
|
[item:kapIII-2.tex]
|
||||||
archive=true
|
archive=true
|
||||||
column=49
|
column=20
|
||||||
encoding=UTF-8
|
encoding=UTF-8
|
||||||
highlight=LaTeX
|
highlight=LaTeX
|
||||||
line=0
|
line=1
|
||||||
open=true
|
open=false
|
||||||
order=6
|
order=6
|
||||||
|
|
||||||
[item:kapIII-3.tex]
|
[item:kapIII-3.tex]
|
||||||
archive=true
|
archive=true
|
||||||
column=50
|
column=108
|
||||||
encoding=UTF-8
|
encoding=UTF-8
|
||||||
highlight=LaTeX
|
highlight=LaTeX
|
||||||
line=0
|
line=338
|
||||||
open=true
|
open=false
|
||||||
order=7
|
order=7
|
||||||
|
|
||||||
[item:kapIII-4.tex]
|
[item:kapIII-4.tex]
|
||||||
archive=true
|
archive=true
|
||||||
column=69
|
column=0
|
||||||
encoding=UTF-8
|
encoding=UTF-8
|
||||||
highlight=LaTeX
|
highlight=LaTeX
|
||||||
line=8
|
line=195
|
||||||
open=true
|
open=false
|
||||||
order=8
|
order=8
|
||||||
|
|
||||||
|
[item:kapIV-1.tex]
|
||||||
|
archive=true
|
||||||
|
column=104
|
||||||
|
encoding=UTF-8
|
||||||
|
highlight=LaTeX
|
||||||
|
line=53
|
||||||
|
open=true
|
||||||
|
order=1
|
||||||
|
|
||||||
[item:math.tex]
|
[item:math.tex]
|
||||||
archive=true
|
archive=true
|
||||||
column=43
|
column=34
|
||||||
encoding=UTF-8
|
encoding=UTF-8
|
||||||
highlight=LaTeX
|
highlight=LaTeX
|
||||||
line=37
|
line=40
|
||||||
open=false
|
open=false
|
||||||
order=2
|
order=2
|
||||||
|
|
||||||
@ -206,10 +215,10 @@ order=-1
|
|||||||
|
|
||||||
[item:theo2.tex]
|
[item:theo2.tex]
|
||||||
archive=true
|
archive=true
|
||||||
column=17
|
column=24
|
||||||
encoding=UTF-8
|
encoding=UTF-8
|
||||||
highlight=LaTeX
|
highlight=LaTeX
|
||||||
line=47
|
line=70
|
||||||
open=true
|
open=true
|
||||||
order=0
|
order=0
|
||||||
|
|
||||||
|
30
theo2.tex
30
theo2.tex
@ -9,7 +9,7 @@
|
|||||||
\usepackage{float}
|
\usepackage{float}
|
||||||
\usepackage{pdflscape}
|
\usepackage{pdflscape}
|
||||||
\usepackage[pdfborder={0 0 0}]{hyperref} % muss immer als letztes eingebunden werden
|
\usepackage[pdfborder={0 0 0}]{hyperref} % muss immer als letztes eingebunden werden
|
||||||
|
\usepackage{colortbl}
|
||||||
\include{math}
|
\include{math}
|
||||||
\include{physics}
|
\include{physics}
|
||||||
|
|
||||||
@ -48,23 +48,27 @@
|
|||||||
\include{kapIII-3}
|
\include{kapIII-3}
|
||||||
\include{kapIII-4}
|
\include{kapIII-4}
|
||||||
|
|
||||||
|
\part{Näherungsmethoden}
|
||||||
|
\label{IV}
|
||||||
|
\include{kapIV-1}
|
||||||
|
\include{kapIV-2}
|
||||||
|
|
||||||
% \part{Übungsmitschrieb}
|
% \part{Übungsmitschrieb}
|
||||||
% \label{UE}
|
% \label{UE}
|
||||||
\include{ueb1}
|
% \include{ueb1}
|
||||||
\include{ueb2}
|
% \include{ueb2}
|
||||||
\include{ueb3}
|
% \include{ueb3}
|
||||||
\include{ueb4}
|
% \include{ueb4}
|
||||||
\include{ueb5}
|
% \include{ueb5}
|
||||||
\include{ueb6}
|
% \include{ueb6}
|
||||||
\include{ueb7}
|
% \include{ueb7}
|
||||||
\include{ueb8}
|
% \include{ueb8}
|
||||||
\include{ueb9}
|
% \include{ueb9}
|
||||||
\include{ueb10}
|
% \include{ueb10}
|
||||||
\include{ueb11}
|
% \include{ueb11}
|
||||||
|
|
||||||
\part{Formelsammlung}
|
\part{Formelsammlung}
|
||||||
\label{FS}
|
\label{FS}
|
||||||
\include{formelsammlung}
|
\include{formelsammlung}
|
||||||
|
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
Loading…
Reference in New Issue
Block a user