übungsblatt 2 fortsetzung
This commit is contained in:
parent
74bedfe3e3
commit
87d8942a0a
8
ueb2.tex
8
ueb2.tex
@ -28,9 +28,9 @@
|
||||
&= a_n^\ast \braket{a_n}{a_m} a_m \\
|
||||
&= e^{-\i \alpha_n} \cdot e^{\i \alpha_m} \cdot \braket{a_n}{a_m} \\
|
||||
&= e^{\i ( \alpha_m - \alpha_n)} \braket{a_n}{a_m} \\
|
||||
&\Rightarrow \\
|
||||
\braket{a_n}{a_m} &= 0
|
||||
\end{align}
|
||||
Da dies für alle Eigenvektoren gelten muss, also auch für Eigenvektoren, für die $e^{\i ( \alpha_m - \alpha_n)} \neq 1$, folgt:
|
||||
$\braket{a_n}{a_m} = 0$
|
||||
|
||||
|
||||
\subsection*{b)}
|
||||
@ -116,9 +116,9 @@ Dann ist $T^{-1}AT$ die Basistransformation von der A-Basis in die T-Basis.
|
||||
Zu zeigen: $\det(e^A = e^{\tr(A))$
|
||||
\begin{align}
|
||||
g(t) &= \det(e^{At}) \\
|
||||
&\stackrel{tailor}{} \det(1 + At + \bigO(t^2)) \\
|
||||
&\stackrel{tailor}{=} \det(1 + At + \bigO(t^2)) \\
|
||||
&= 1 + \tr(A) + \bigO(t^2) \\
|
||||
&\stackrel{tailor ``rückwärs''}{} e^{\tr(A)t}
|
||||
&\stackrel{tailor ``rückwärs''}{=} e^{\tr(A)t}
|
||||
\end{align}
|
||||
|
||||
\begin{align}
|
||||
|
Loading…
Reference in New Issue
Block a user