Kapitel III.1 fertig
This commit is contained in:
parent
10411f38ac
commit
a1b5390cd7
40
kapIII-1.tex
Normal file
40
kapIII-1.tex
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
\begin{landscape}
|
||||||
|
\chapter{Übersicht und Notation}
|
||||||
|
\begin{tabular}{l||l|l|l}
|
||||||
|
& $d = 1$ & $d = 2$ & $d = 3$ \\ \hline \hline
|
||||||
|
SG: $i\hbar \ket{\psi} = H \ket{\psi}$ &
|
||||||
|
$\checkmark$ &
|
||||||
|
$\checkmark$ &
|
||||||
|
$\checkmark$ \\ \hline
|
||||||
|
Hamiltonoperator: $H$ &
|
||||||
|
$\frac{\hat{p}^2}{2m} + V(\hat{x})$ &
|
||||||
|
$\frac{\hat{p}_x^2}{2m} + \frac{\hat{p}_y^2}{2m} + V(\hat{x}, \hat{y})$ &
|
||||||
|
$\frac{\hat{p}_x^2}{2m} + \frac{\hat{p}_y^2}{2m} + \frac{\hat{p}_z^2}{2m} + V(\hat{x}, \hat{y}, \hat{z})$ \\ \hline
|
||||||
|
Kommutator &
|
||||||
|
$[\hat{x}, \hat{y}] = i\hbar$ &
|
||||||
|
$[\hat{x}_k, \hat{y}_l] = i\hbar \krondelta{k,l};~ k, l = 1, 2$ &
|
||||||
|
$[\hat{x}_k, \hat{y}_l] = i\hbar \krondelta{k,l};~ k, l = 1, 2, 3$ \\ \hline
|
||||||
|
stationäre SG: $H \ket{\phi} = E \ket{\psi}$ &
|
||||||
|
gewöhnliche DGL &
|
||||||
|
partielle DGL &
|
||||||
|
partielle DGL\\ \hline
|
||||||
|
Rotationsinvarianz &
|
||||||
|
Irrelevant &
|
||||||
|
$V(x,y) = V(\rho)$; $\rho \equiv \sqrt{x^2 + y^2}$ &
|
||||||
|
$V(x,y,z) = V(r)$; $r \equiv \sqrt{x^2 + y^2 + z^2}$ \\ \hline
|
||||||
|
Ortseingen-vektoren &
|
||||||
|
$\hat{x}\ket{x} = x \ket{x}$ &
|
||||||
|
$\ket{x,y} \cequiv \ket{\rho, \theta}$ &
|
||||||
|
$\ket{x,y,z} \cequiv \ket{\rho, \theta, \varphi}$ \\ \hline
|
||||||
|
Norm der Wellenfunktion &
|
||||||
|
\begin{math}1 = \intgr{-\infty}{+\infty}{\abs{\psi(x)}^2}{x}\end{math} &
|
||||||
|
$\begin{array}{l}
|
||||||
|
1 = \intgr{-\infty}{+\infty}{\intgr{-\infty}{+\infty}{\abs{\psi(x,y)}^2}{y}}{x} \\
|
||||||
|
\hphantom{1} = \intgr{0}{\infty}{\rho \intgr{0}{2\pi}{\abs{\psi(\rho, \varphi)}^2}{\varphi}}{\rho}
|
||||||
|
\end{array}$ &
|
||||||
|
$\begin{array}{l}
|
||||||
|
1 = \intgru{\intgru{\intgru{\abs{\psi(x,y,z)}^2}{x}}{y}}{z} \\
|
||||||
|
\hphantom{1} = \intgr{0}{+\infty}{r^2 \intgr{-1}{+1}{\intgr{0}{2\pi}{\abs{\psi}^2}{\varphi}}{(\cos\theta)}}{r}
|
||||||
|
\end{array}$ \\ \hline
|
||||||
|
\end{tabular}
|
||||||
|
\end{landscape}
|
Loading…
Reference in New Issue
Block a user