Merge branch 'master' of git+ssh://git@git.eluhost.de:522/qm1-script
This commit is contained in:
commit
d0db85c772
BIN
excs/qm1_blatt07_SS08.pdf
Normal file
BIN
excs/qm1_blatt07_SS08.pdf
Normal file
Binary file not shown.
BIN
excs/qm1_blatt08_SS08.pdf
Normal file
BIN
excs/qm1_blatt08_SS08.pdf
Normal file
Binary file not shown.
5
formelsammlung.tex
Normal file
5
formelsammlung.tex
Normal file
@ -0,0 +1,5 @@
|
||||
\chapter{Lineare Algebra}
|
||||
\section{Identitäten}
|
||||
\begin{math}
|
||||
A^{-1} = \inlinematrix{a & b \\ c & d}^{-1} = \frac{1}{ad - bc} \inlinematrix{d & -b \\ -c & a}
|
||||
\end{math}
|
BIN
grafiken/U_A18_1.pdf
Normal file
BIN
grafiken/U_A18_1.pdf
Normal file
Binary file not shown.
8
math.tex
8
math.tex
@ -7,6 +7,7 @@
|
||||
\newcommand{\setQ}{\mathbbm{Q}}
|
||||
\newcommand{\setR}{\mathbbm{R}}
|
||||
\newcommand{\setC}{\mathbbm{C}}
|
||||
\newcommand{\einsmatrix}{\mathbbm{1}}
|
||||
\newcommand{\inlinematrix}[1]{\begin{pmatrix} #1 \end{pmatrix}}
|
||||
\newcommand{\inlinematrixu}[1]{\begin{matrix} #1 \end{matrix}}
|
||||
\newcommand{\inlinematrixd}[2]{\left( \begin{matrix} #1\vphantom{#2} \end{matrix} ~\right| \left. \begin{matrix} \vphantom{#1}#2 \end{matrix} \right)}
|
||||
@ -28,4 +29,9 @@
|
||||
\newcommand{\diffT}[1]{\frac{\text{d}}{\text{d} #1}}
|
||||
\newcommand{\diffPfrac}[2]{\frac{\partial #1}{\partial #2}}
|
||||
\newcommand{\intgr}[4]{\int_{#1}^{#2} #3 ~\text{d}#4}
|
||||
\newcommand{\intgru}[2]{\int #1 ~\text{d}#2}
|
||||
\newcommand{\intgru}[2]{\int #1 ~\text{d}#2}
|
||||
|
||||
\newcommand{\bbracket}[1]{\left #1 \right}
|
||||
|
||||
\newcommand{\levicivita}[1]{\varEpsilon_{#1}}
|
||||
\newcommand{\krondelta}[1]{\delta_{+1}}
|
117
svg/U_A18_1.svg
Normal file
117
svg/U_A18_1.svg
Normal file
@ -0,0 +1,117 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="316.41733"
|
||||
height="131.81102"
|
||||
id="svg2"
|
||||
sodipodi:version="0.32"
|
||||
inkscape:version="0.46"
|
||||
version="1.0"
|
||||
sodipodi:docname="U_A18_1.svg"
|
||||
inkscape:output_extension="org.inkscape.output.svg.inkscape">
|
||||
<defs
|
||||
id="defs4">
|
||||
<inkscape:perspective
|
||||
sodipodi:type="inkscape:persp3d"
|
||||
inkscape:vp_x="0 : 526.18109 : 1"
|
||||
inkscape:vp_y="0 : 1000 : 0"
|
||||
inkscape:vp_z="744.09448 : 526.18109 : 1"
|
||||
inkscape:persp3d-origin="372.04724 : 350.78739 : 1"
|
||||
id="perspective10" />
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
gridtolerance="10000"
|
||||
guidetolerance="10"
|
||||
objecttolerance="10"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="2.8"
|
||||
inkscape:cx="156.10511"
|
||||
inkscape:cy="68.809151"
|
||||
inkscape:document-units="px"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="true"
|
||||
inkscape:object-nodes="true"
|
||||
showguides="false"
|
||||
units="cm"
|
||||
inkscape:window-width="1212"
|
||||
inkscape:window-height="857"
|
||||
inkscape:window-x="79"
|
||||
inkscape:window-y="69">
|
||||
<inkscape:grid
|
||||
type="xygrid"
|
||||
id="grid2389"
|
||||
visible="true"
|
||||
enabled="true" />
|
||||
</sodipodi:namedview>
|
||||
<metadata
|
||||
id="metadata7">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Layer 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1"
|
||||
transform="translate(-239.5,-506.3241)">
|
||||
<g
|
||||
id="g2413"
|
||||
transform="translate(17.708664,17.636472)">
|
||||
<path
|
||||
id="path2393"
|
||||
d="M 240,602.36218 L 520,602.36218"
|
||||
style="fill:none;fill-opacity:0.75;fill-rule:evenodd;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||
<path
|
||||
id="path2399"
|
||||
d="M 340,602.36218 L 340,542.36218 L 430,542.36218 L 430,602.36218"
|
||||
style="fill:none;fill-opacity:0.75;fill-rule:evenodd;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
|
||||
<text
|
||||
id="text2401"
|
||||
y="562.36218"
|
||||
x="260"
|
||||
style="font-size:22px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="562.36218"
|
||||
x="260"
|
||||
id="tspan2403"
|
||||
sodipodi:role="line">I</tspan></text>
|
||||
<text
|
||||
id="text2405"
|
||||
y="522.36218"
|
||||
x="360"
|
||||
style="font-size:22px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="522.36218"
|
||||
x="360"
|
||||
id="tspan2407"
|
||||
sodipodi:role="line">II</tspan></text>
|
||||
<text
|
||||
id="text2409"
|
||||
y="562.36218"
|
||||
x="450"
|
||||
style="font-size:22px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans"
|
||||
xml:space="preserve"><tspan
|
||||
y="562.36218"
|
||||
x="450"
|
||||
id="tspan2411"
|
||||
sodipodi:role="line">III</tspan></text>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 4.0 KiB |
62
theo2.kilepr
62
theo2.kilepr
@ -3,7 +3,7 @@ img_extIsRegExp=false
|
||||
img_extensions=.eps .jpg .jpeg .png .pdf .ps .fig .gif
|
||||
kileprversion=2
|
||||
kileversion=2.0
|
||||
lastDocument=kapII-0.tex
|
||||
lastDocument=theo2.tex
|
||||
masterDocument=
|
||||
name=Theo2
|
||||
pkg_extIsRegExp=false
|
||||
@ -15,14 +15,23 @@ src_extensions=.tex .ltx .latex .dtx .ins
|
||||
MakeIndex=
|
||||
QuickBuild=PDFLaTeX+ViewPDF
|
||||
|
||||
[item:formelsammlung.tex]
|
||||
archive=true
|
||||
column=0
|
||||
encoding=UTF-8
|
||||
highlight=LaTeX
|
||||
line=6
|
||||
open=true
|
||||
order=2
|
||||
|
||||
[item:kapI-1.tex]
|
||||
archive=true
|
||||
column=10936
|
||||
column=35
|
||||
encoding=
|
||||
highlight=
|
||||
highlight=LaTeX
|
||||
line=0
|
||||
open=false
|
||||
order=-1
|
||||
open=true
|
||||
order=5
|
||||
|
||||
[item:kapI-2.tex]
|
||||
archive=true
|
||||
@ -71,11 +80,11 @@ order=-1
|
||||
|
||||
[item:kapII-0.tex]
|
||||
archive=true
|
||||
column=98
|
||||
column=0
|
||||
encoding=UTF-8
|
||||
highlight=LaTeX
|
||||
line=46
|
||||
open=true
|
||||
line=0
|
||||
open=false
|
||||
order=1
|
||||
|
||||
[item:kapII-1.tex]
|
||||
@ -107,21 +116,21 @@ order=-1
|
||||
|
||||
[item:math.tex]
|
||||
archive=true
|
||||
column=42
|
||||
column=0
|
||||
encoding=UTF-8
|
||||
highlight=LaTeX
|
||||
line=29
|
||||
open=false
|
||||
line=34
|
||||
open=true
|
||||
order=3
|
||||
|
||||
[item:physics.tex]
|
||||
archive=true
|
||||
column=22
|
||||
encoding=
|
||||
column=37
|
||||
encoding=UTF-8
|
||||
highlight=LaTeX
|
||||
line=1
|
||||
open=false
|
||||
order=-1
|
||||
line=10
|
||||
open=true
|
||||
order=4
|
||||
|
||||
[item:theo2.kilepr]
|
||||
archive=true
|
||||
@ -134,10 +143,10 @@ order=-1
|
||||
|
||||
[item:theo2.tex]
|
||||
archive=true
|
||||
column=0
|
||||
column=39
|
||||
encoding=UTF-8
|
||||
highlight=LaTeX
|
||||
line=46
|
||||
line=10
|
||||
open=true
|
||||
order=0
|
||||
|
||||
@ -181,7 +190,7 @@ order=-1
|
||||
archive=true
|
||||
column=0
|
||||
encoding=
|
||||
highlight=
|
||||
highlight=LaTeX
|
||||
line=0
|
||||
open=false
|
||||
order=-1
|
||||
@ -189,8 +198,17 @@ order=-1
|
||||
[item:ueb6.tex]
|
||||
archive=true
|
||||
column=0
|
||||
encoding=
|
||||
highlight=
|
||||
line=0
|
||||
encoding=UTF-8
|
||||
highlight=LaTeX
|
||||
line=119
|
||||
open=false
|
||||
order=-1
|
||||
|
||||
[item:ueb7.tex]
|
||||
archive=true
|
||||
column=44
|
||||
encoding=UTF-8
|
||||
highlight=LaTeX
|
||||
line=46
|
||||
open=true
|
||||
order=1
|
||||
|
@ -8,7 +8,7 @@
|
||||
\usepackage{amsfonts}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{multirow}
|
||||
\usepackage[pdfborder={0 0 0}]{hyperref}
|
||||
\usepackage[pdfborder={0 0 0}]{hyperref} % muss immer als letztes eingebunden werden
|
||||
|
||||
\include{math}
|
||||
\include{physics}
|
||||
@ -45,6 +45,11 @@
|
||||
% \include{ueb4}
|
||||
% \include{ueb5}
|
||||
% \include{ueb6}
|
||||
% \inlcude{ueb7}
|
||||
|
||||
% \part{Formelsammlung}
|
||||
% \label{FS}
|
||||
% \include{formelsammlung}
|
||||
|
||||
|
||||
\end{document}
|
||||
|
110
ueb6.tex
110
ueb6.tex
@ -4,10 +4,116 @@
|
||||
\chapter{Quantenmechanik I - Übungsblatt 6}
|
||||
\section{Aufgabe 14: Spin-1-Teilchen}
|
||||
\subsection*{a)}
|
||||
\begin{align}
|
||||
H &= A S_z + B S_x^2 \\
|
||||
H &= A \hbar \Sigma_z + B \hbar^2 \Sigma_x^2 \\
|
||||
H &= A \hbar \inlinematrix{1 &0 &0 \\ 0 &0 &0 \\ 0 &0 &-1} + \frac{B \hbar^2}{2} \inlinematrix{1 &0 &1 \\ 0 &2 &0 \\ 1 &0 &1} \\
|
||||
H &= \hbar \inlinematrix{A+\frac{B \hbar}{2} &0 &\frac{B \hbar}{2} \\ 0 &\frac{B \hbar}{2} &0 \\ \frac{B \hbar}{2} &0 &-A+\frac{B \hbar}{2}}
|
||||
\end{align}
|
||||
|
||||
|
||||
$det(H-\lambda \einsmatrix) = 0 \\$
|
||||
\begin{align}
|
||||
\lambda_1 &= B\hbar^2 \\
|
||||
\lambda_2 &= \frac{\hbar^2}{2} B (1 + \sqrt{1 + \frac{4 A^2}{\hbar^2 B^2}} \\
|
||||
\lambda_3 &= \frac{\hbar^2}{2} B (1-\sqrt{1 + \frac{4 A^2}{\hbar^2 B}}
|
||||
\end{align}
|
||||
|
||||
\begin{align}
|
||||
a &:= A + \frac{\hbar B}{2} \sqrt{1+\frac{4 A^2}{\hbar^2 B^2}} \\
|
||||
b &:= \frac{\hbar B}{2} \\
|
||||
\ket{\phi_0} &= \inlinematrix{0 \\ 1 \\ 0} &
|
||||
\ket{\phi+} &= \frac{1}{\sqrt{a^2+b^2}} \inlinematrix{a \\ 0 \\ b} &
|
||||
\ket{\phi-} &= \frac{1}{\sqrt{a^2+b^2}} \inlinematrix{-b \\ 0 \\ a} \\ \\
|
||||
\ket{\psi(t)} &= c_0 e^{-\i E_0 t} \ket{\phi_0} + c_+ e^{-E_+ t} \ket{\psi_+} + c_- e^{-E_-t t} \ket{\phi-} \\ % muss da nicht e^\i?
|
||||
\ket{\psi(0)} &= \ket{z+} &= \inlinematrix{1 \\ 0 \\ 0} \\ \\
|
||||
\end{align}
|
||||
$\Rightarrow c_0 = 0$
|
||||
\begin{align}
|
||||
\frac{1}{\sqrt{a^2+b^2}}(c_+ a - c_- b) &\stackrel{!}{} 1 \\
|
||||
\frac{1}{\sqrt{a^2+b^2}}(c_+ b + c_- a) &\stackrel{!}{} 0
|
||||
\end{align}
|
||||
$\Rightarrow $
|
||||
\begin{align}
|
||||
c_- &= \frac{-b\sqrt{a^2+b^2}}{a^2+b^2} \\
|
||||
c_+ &= \frac{a\sqrt{a^2+b^2}}{a^2+b^2} \\
|
||||
S_x &= \hbar \Sigma_x &= \hbar \inlinematrix{0 &1 &0 \\ 1 &0 &1 \\ 0 &1 &0}
|
||||
\end{align}
|
||||
|
||||
Da $\inlinematrix{l \\ o \\ m} S_x \inlinematrix{n \\ o \\ p} = 0}$ folgt $S_x = S_y = 0$ %wo kommt das her, und wieso ist hier S_x=0, obwohl es oben != 0 ist
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection*{b)}
|
||||
|
||||
\begin{align}
|
||||
S_z &= \hbar \inlinematrix{1 &0 &0 \\ 0 &0 &0 \\ 0 &0 &-1}
|
||||
\end{align}
|
||||
|
||||
\begin{align}
|
||||
\dirac{\psi(t)}{S_z}{\psi(t)} &= \frac{1}{(a^2+b^2)^2} [(a^2-b^2)^2 + 4a^2b^2cos((E_+-E_-)t)]}
|
||||
\end{align}
|
||||
|
||||
|
||||
|
||||
\section{Aufgabe 15: Benzol-Molekül (Teil 2)}
|
||||
\subsection*{a)}
|
||||
\subsection*{b)}
|
||||
\begin{align}
|
||||
P_m H &= \norm{\braket{\phi_m}{\psi(t)}} \\
|
||||
\ket{\psi(t)} &= U(t,t_0) \ket{\psi(t)} \\ \\
|
||||
&= exp(-\frac{\i}{\hbar} t H} \\
|
||||
&= \sum{k=0}{5}{exp(-\frac{\i}{\hbar} t \lambda_k) \ket{\chi_k} \braket{\chi_k}{\phi_0}} \\ %warum 5?
|
||||
&=^1 \frac{1}{6} \sum{k=0}{5}{\sum{n=0}{5}{exp(-\frac{\i}{\hbar} t (E-2Acos(\delta_k)))}} \\ %warum diese umformung?
|
||||
P_m(t) &= \norm{\braket{\phi_m}{\psi(t)}} \\
|
||||
&= \frac{1}{6} \sum{k=0}{5}{\sum{n=0}{5}{exp(...)}\braket{\phi_m}{\phi_n}} \\ %geht die summe wirklich bis 5? und über was?
|
||||
&=^2 \frac{1}{36} \norm{\sum{k}{biw wo?}{exp(-\frac{\i}{\hbar} t (E-2Acos(\delta_k) + \i \delta_k)}} \\ \\
|
||||
&= ?
|
||||
\end{align}
|
||||
(1)
|
||||
\begin{align}
|
||||
\braket{\chi_k}{\phi_0} &= \frac{1}{\sqrt{6}} \sum{n=0}{5}{exp(-\i n \delta_{keine ahnung}\bracket{\phi_n}{\phi_0}} \\ \\
|
||||
&= \frac{1}{\sqrt{6}} e^{-\i 0 \delta_{keine ahnung}} \\
|
||||
&= \frac{1}{\sqrt{6}}
|
||||
\end{align}
|
||||
(2)
|
||||
\begin{align}
|
||||
\braket{\phi_m}{\phi_n} = \delta_{n m}
|
||||
\end{align}
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection*{b)}
|
||||
\begin{math}
|
||||
\tau = \frac{2\pi}{A}\hbar
|
||||
\end{math}
|
||||
|
||||
|
||||
\section{Aufgabe 16: Schrödingergleichung in Impulsraumdarstellung}
|
||||
|
||||
\begin{align} \\
|
||||
%nach schrödingergleichung in ortsdarstellung gucken
|
||||
\i \hbar \partial_\tau \ket{\psi} &= H \ket{\psi} & \left| \bra{p}\right. \\
|
||||
\i \hbar \partial_\t \psi(p) &= \dirac{p}{\frac{p^2}{2m}+V(\hat{x}}{\psi}
|
||||
\end{align}
|
||||
|
||||
\begin{align}}
|
||||
\int_{-\infty}^{\infty} \text{dx} \dirac{p}{V(\hat[x})}{x}\braket{x}{\psi} \\
|
||||
&= \int_{-\infty}^{\infty} \text{dx} V(x) \frac{1}{\sqrt{2\pi\hbar}}e^{-\frac{\i p}{\hbar}x}\braket{x}{\psi} \\
|
||||
&= \int_{-\infty}^{\infty} \text{dx} \int_{-\infty}^{\infty} \text{dp'} V(x)\frac{1}{\sqrt{2\pi\hbar}e^{-\frac{\i p}{\hbar}x}\braket{x}{p'}\braket{p'}{x} \\ \\
|
||||
&= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \text{dx} \text{dp'} V(x)\frac{1}{\sqrt{2\pi\hbar}e^{-\frac{i(p-p')}{\hbar}x}\psi(p') \\
|
||||
&= (2) % aus aufgabenblatt raussuchen
|
||||
\end{align}
|
||||
|
||||
\begin{align}
|
||||
%wo kommt das her?
|
||||
\dirac{p}{V(\hat{x}}{\psi} &= \dirac{p}{V(\i\hbar\diffP{p}}{\psi} \\
|
||||
&= V(\i\hbar\diffP{p})\psi(p) %vertauschen von p und V: Regeln?
|
||||
\end{align}
|
||||
|
||||
|
||||
|
||||
\i \hbar
|
||||
|
||||
\section{Aufgabe 16: Schrödingergleichung in Impulsraumdarstellung}
|
71
ueb7.tex
71
ueb7.tex
@ -0,0 +1,71 @@
|
||||
%\includegraphics{excs/qm1_blatt07_SS08.pdf}
|
||||
%\pagebreak
|
||||
|
||||
\chapter{Quantenmechanik I - Übungsblatt 7}
|
||||
\section{Aufgabe 17: Unendlich hoher Potentialtop (Ergänzungen)}
|
||||
\subsection*{a)}
|
||||
\subsection*{b)}
|
||||
\subsection*{c)}
|
||||
|
||||
\section{Aufgabe 18: Tunneleffekt}
|
||||
\includegraphics{grafiken/U_A18_1.pdf}
|
||||
\subsection*{a)}
|
||||
|
||||
I
|
||||
\begin{math}
|
||||
-\frac{\hbar^2}{2m} \diffPs{x}^2 \Phi(x) = E \Phi(x) \\
|
||||
\Phi(x) =A e^{\i k x} + B e^{-\i k x} \\
|
||||
k = \sqrt{\frac{2 E M}{\hbar^2}}
|
||||
\end{math}
|
||||
|
||||
II $E < V_0$
|
||||
\begin{math}
|
||||
\Phi(x) = C e^a + D e^{-qx} \\ % ist das nen q hier?
|
||||
q = \sqrt{\frac{-2m(E-V_0)}{\hbar^2}}
|
||||
\end{math}
|
||||
|
||||
III
|
||||
\begin{math}
|
||||
\Phi(x) = \tilde{E} e^{\i k x} + F e^{-\i k x}
|
||||
\end{math}
|
||||
|
||||
\subsection*{b)}
|
||||
\begin{math}
|
||||
F = 0
|
||||
\Phi_I(0) = \Phi_{II}(0) \\
|
||||
A+B = C+D \\
|
||||
\diffT{x} \Phi_I(0) = \diffT{x} \Phi_{II}(0) \\ % anschlussbedingungen korrekt
|
||||
\i k A - \i k B = q C - q D \\
|
||||
\inlinematrix{1 & 1 \\\i k & -\i k} \inlinematrix{A & B} = \inlinematrix{1 & 1 \\ q & -q} \inlinematrix{C & D} \\
|
||||
\Phi_{II}(a) = \Phi_{III}(a) \\
|
||||
C e^{a \cdot a} + D e^{-a \cdot a} = \tilde{E} e^{\i k a} \\
|
||||
\diffT{x} \Phi_{II}(a) = \diffT{x} \Phi_{III}(a) \\
|
||||
q C e^{a \cdot a} - q D e^{-a \cdot a} = \i k \tilde{E} e^{\i k a} \
|
||||
\inlinematrix{e^{a \cdot a} & e^{-a \cdot a} \\ q e^{a \cdot a} & q e^{-a \cdot a}} \inlinematrix{C & D} = \inlinematrix{\tilde{E} e^{\i k a} \\ \i k \tilde{E} e^{\i k a}}
|
||||
\end{math}
|
||||
|
||||
mit den Inversen von: (1) und (2) % geschweifte klammern unter matrix 1 und 2 setzen
|
||||
|
||||
\begin{math}
|
||||
%mit maxima berechnet
|
||||
\inlinematrix{C & D} = \inlinematrix{\frac{{e}^{{a}^{2}}}{{e}^{2 {a}^{2}}-1} & -\frac{1}{\left( {e}^{3\,{a}^{2}}-{e}^{{a}^{2}}\right) q} \\ -\frac{{e}^{{a}^{2}}}{{e}^{2{a}^{2}}-1} & \frac{{e}^{{a}^{2}}}{\left( {e}^{2 {a}^{2}}-1\right) q}} \inlinematrix{\tilde{E} e^{\i k a} \\ \i k \tilde{E} e^{\i k a}} \\
|
||||
\inlinematrix{A & B} = \inlinematrix{\frac{1}{2} & -\frac{\i}{2k}\\ \frac{1}{2} & \frac{\i}{2k}} \inlinematrix{1 & 1 \\ q & -q} \inlinematrix{C & D}
|
||||
\end{math}
|
||||
|
||||
$\inlinematrix{C & D}$ eingesetzt ergibt:
|
||||
\begin{align}
|
||||
\tilde{E} &= \frac{2 k a}{e^{ika} \bbracket{(q^2 - k^2) \cdot \i sinh(q \cdot a) - 2 k q cosh(qa)} \\
|
||||
A &= 1 \\
|
||||
T &= \bbracket{\frac{E}{A}}^2 \\
|
||||
R &= 1 - T &= \bbracket{\frac{B}{A}}^2 \\
|
||||
T &= \frac{1}{\bbracket{\frac{a^2 - k^2}{2 q k}} \cdot 2 sinh^2(q a) + cosh^2(q a)}
|
||||
\end{align}
|
||||
|
||||
|
||||
\subsection*{c)}
|
||||
|
||||
\section{Aufgabe 19: Doppeltes \delta-Potential}
|
||||
\subsection*{a)}
|
||||
\subsection*{b)}
|
||||
\subsection*{c)}
|
||||
\subsection*{d)}
|
Loading…
Reference in New Issue
Block a user