Merge branch 'master' of git+ssh://git@git.eluhost.de:522/qm1-script

This commit is contained in:
Oliver Groß 2008-06-30 15:07:37 +02:00
commit d0db85c772
10 changed files with 354 additions and 26 deletions

BIN
excs/qm1_blatt07_SS08.pdf Normal file

Binary file not shown.

BIN
excs/qm1_blatt08_SS08.pdf Normal file

Binary file not shown.

5
formelsammlung.tex Normal file
View File

@ -0,0 +1,5 @@
\chapter{Lineare Algebra}
\section{Identitäten}
\begin{math}
A^{-1} = \inlinematrix{a & b \\ c & d}^{-1} = \frac{1}{ad - bc} \inlinematrix{d & -b \\ -c & a}
\end{math}

BIN
grafiken/U_A18_1.pdf Normal file

Binary file not shown.

View File

@ -7,6 +7,7 @@
\newcommand{\setQ}{\mathbbm{Q}} \newcommand{\setQ}{\mathbbm{Q}}
\newcommand{\setR}{\mathbbm{R}} \newcommand{\setR}{\mathbbm{R}}
\newcommand{\setC}{\mathbbm{C}} \newcommand{\setC}{\mathbbm{C}}
\newcommand{\einsmatrix}{\mathbbm{1}}
\newcommand{\inlinematrix}[1]{\begin{pmatrix} #1 \end{pmatrix}} \newcommand{\inlinematrix}[1]{\begin{pmatrix} #1 \end{pmatrix}}
\newcommand{\inlinematrixu}[1]{\begin{matrix} #1 \end{matrix}} \newcommand{\inlinematrixu}[1]{\begin{matrix} #1 \end{matrix}}
\newcommand{\inlinematrixd}[2]{\left( \begin{matrix} #1\vphantom{#2} \end{matrix} ~\right| \left. \begin{matrix} \vphantom{#1}#2 \end{matrix} \right)} \newcommand{\inlinematrixd}[2]{\left( \begin{matrix} #1\vphantom{#2} \end{matrix} ~\right| \left. \begin{matrix} \vphantom{#1}#2 \end{matrix} \right)}
@ -29,3 +30,8 @@
\newcommand{\diffPfrac}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\diffPfrac}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\intgr}[4]{\int_{#1}^{#2} #3 ~\text{d}#4} \newcommand{\intgr}[4]{\int_{#1}^{#2} #3 ~\text{d}#4}
\newcommand{\intgru}[2]{\int #1 ~\text{d}#2} \newcommand{\intgru}[2]{\int #1 ~\text{d}#2}
\newcommand{\bbracket}[1]{\left #1 \right}
\newcommand{\levicivita}[1]{\varEpsilon_{#1}}
\newcommand{\krondelta}[1]{\delta_{+1}}

117
svg/U_A18_1.svg Normal file
View File

@ -0,0 +1,117 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Created with Inkscape (http://www.inkscape.org/) -->
<svg
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:cc="http://creativecommons.org/ns#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
width="316.41733"
height="131.81102"
id="svg2"
sodipodi:version="0.32"
inkscape:version="0.46"
version="1.0"
sodipodi:docname="U_A18_1.svg"
inkscape:output_extension="org.inkscape.output.svg.inkscape">
<defs
id="defs4">
<inkscape:perspective
sodipodi:type="inkscape:persp3d"
inkscape:vp_x="0 : 526.18109 : 1"
inkscape:vp_y="0 : 1000 : 0"
inkscape:vp_z="744.09448 : 526.18109 : 1"
inkscape:persp3d-origin="372.04724 : 350.78739 : 1"
id="perspective10" />
</defs>
<sodipodi:namedview
id="base"
pagecolor="#ffffff"
bordercolor="#666666"
borderopacity="1.0"
gridtolerance="10000"
guidetolerance="10"
objecttolerance="10"
inkscape:pageopacity="0.0"
inkscape:pageshadow="2"
inkscape:zoom="2.8"
inkscape:cx="156.10511"
inkscape:cy="68.809151"
inkscape:document-units="px"
inkscape:current-layer="layer1"
showgrid="true"
inkscape:object-nodes="true"
showguides="false"
units="cm"
inkscape:window-width="1212"
inkscape:window-height="857"
inkscape:window-x="79"
inkscape:window-y="69">
<inkscape:grid
type="xygrid"
id="grid2389"
visible="true"
enabled="true" />
</sodipodi:namedview>
<metadata
id="metadata7">
<rdf:RDF>
<cc:Work
rdf:about="">
<dc:format>image/svg+xml</dc:format>
<dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
</cc:Work>
</rdf:RDF>
</metadata>
<g
inkscape:label="Layer 1"
inkscape:groupmode="layer"
id="layer1"
transform="translate(-239.5,-506.3241)">
<g
id="g2413"
transform="translate(17.708664,17.636472)">
<path
id="path2393"
d="M 240,602.36218 L 520,602.36218"
style="fill:none;fill-opacity:0.75;fill-rule:evenodd;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
<path
id="path2399"
d="M 340,602.36218 L 340,542.36218 L 430,542.36218 L 430,602.36218"
style="fill:none;fill-opacity:0.75;fill-rule:evenodd;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1" />
<text
id="text2401"
y="562.36218"
x="260"
style="font-size:22px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans"
xml:space="preserve"><tspan
y="562.36218"
x="260"
id="tspan2403"
sodipodi:role="line">I</tspan></text>
<text
id="text2405"
y="522.36218"
x="360"
style="font-size:22px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans"
xml:space="preserve"><tspan
y="522.36218"
x="360"
id="tspan2407"
sodipodi:role="line">II</tspan></text>
<text
id="text2409"
y="562.36218"
x="450"
style="font-size:22px;font-style:normal;font-weight:normal;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans"
xml:space="preserve"><tspan
y="562.36218"
x="450"
id="tspan2411"
sodipodi:role="line">III</tspan></text>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 4.0 KiB

View File

@ -3,7 +3,7 @@ img_extIsRegExp=false
img_extensions=.eps .jpg .jpeg .png .pdf .ps .fig .gif img_extensions=.eps .jpg .jpeg .png .pdf .ps .fig .gif
kileprversion=2 kileprversion=2
kileversion=2.0 kileversion=2.0
lastDocument=kapII-0.tex lastDocument=theo2.tex
masterDocument= masterDocument=
name=Theo2 name=Theo2
pkg_extIsRegExp=false pkg_extIsRegExp=false
@ -15,14 +15,23 @@ src_extensions=.tex .ltx .latex .dtx .ins
MakeIndex= MakeIndex=
QuickBuild=PDFLaTeX+ViewPDF QuickBuild=PDFLaTeX+ViewPDF
[item:formelsammlung.tex]
archive=true
column=0
encoding=UTF-8
highlight=LaTeX
line=6
open=true
order=2
[item:kapI-1.tex] [item:kapI-1.tex]
archive=true archive=true
column=10936 column=35
encoding= encoding=
highlight= highlight=LaTeX
line=0 line=0
open=false open=true
order=-1 order=5
[item:kapI-2.tex] [item:kapI-2.tex]
archive=true archive=true
@ -71,11 +80,11 @@ order=-1
[item:kapII-0.tex] [item:kapII-0.tex]
archive=true archive=true
column=98 column=0
encoding=UTF-8 encoding=UTF-8
highlight=LaTeX highlight=LaTeX
line=46 line=0
open=true open=false
order=1 order=1
[item:kapII-1.tex] [item:kapII-1.tex]
@ -107,21 +116,21 @@ order=-1
[item:math.tex] [item:math.tex]
archive=true archive=true
column=42 column=0
encoding=UTF-8 encoding=UTF-8
highlight=LaTeX highlight=LaTeX
line=29 line=34
open=false open=true
order=3 order=3
[item:physics.tex] [item:physics.tex]
archive=true archive=true
column=22 column=37
encoding= encoding=UTF-8
highlight=LaTeX highlight=LaTeX
line=1 line=10
open=false open=true
order=-1 order=4
[item:theo2.kilepr] [item:theo2.kilepr]
archive=true archive=true
@ -134,10 +143,10 @@ order=-1
[item:theo2.tex] [item:theo2.tex]
archive=true archive=true
column=0 column=39
encoding=UTF-8 encoding=UTF-8
highlight=LaTeX highlight=LaTeX
line=46 line=10
open=true open=true
order=0 order=0
@ -181,7 +190,7 @@ order=-1
archive=true archive=true
column=0 column=0
encoding= encoding=
highlight= highlight=LaTeX
line=0 line=0
open=false open=false
order=-1 order=-1
@ -189,8 +198,17 @@ order=-1
[item:ueb6.tex] [item:ueb6.tex]
archive=true archive=true
column=0 column=0
encoding= encoding=UTF-8
highlight= highlight=LaTeX
line=0 line=119
open=false open=false
order=-1 order=-1
[item:ueb7.tex]
archive=true
column=44
encoding=UTF-8
highlight=LaTeX
line=46
open=true
order=1

View File

@ -8,7 +8,7 @@
\usepackage{amsfonts} \usepackage{amsfonts}
\usepackage{amssymb} \usepackage{amssymb}
\usepackage{multirow} \usepackage{multirow}
\usepackage[pdfborder={0 0 0}]{hyperref} \usepackage[pdfborder={0 0 0}]{hyperref} % muss immer als letztes eingebunden werden
\include{math} \include{math}
\include{physics} \include{physics}
@ -45,6 +45,11 @@
% \include{ueb4} % \include{ueb4}
% \include{ueb5} % \include{ueb5}
% \include{ueb6} % \include{ueb6}
% \inlcude{ueb7}
% \part{Formelsammlung}
% \label{FS}
% \include{formelsammlung}
\end{document} \end{document}

106
ueb6.tex
View File

@ -4,10 +4,116 @@
\chapter{Quantenmechanik I - Übungsblatt 6} \chapter{Quantenmechanik I - Übungsblatt 6}
\section{Aufgabe 14: Spin-1-Teilchen} \section{Aufgabe 14: Spin-1-Teilchen}
\subsection*{a)} \subsection*{a)}
\begin{align}
H &= A S_z + B S_x^2 \\
H &= A \hbar \Sigma_z + B \hbar^2 \Sigma_x^2 \\
H &= A \hbar \inlinematrix{1 &0 &0 \\ 0 &0 &0 \\ 0 &0 &-1} + \frac{B \hbar^2}{2} \inlinematrix{1 &0 &1 \\ 0 &2 &0 \\ 1 &0 &1} \\
H &= \hbar \inlinematrix{A+\frac{B \hbar}{2} &0 &\frac{B \hbar}{2} \\ 0 &\frac{B \hbar}{2} &0 \\ \frac{B \hbar}{2} &0 &-A+\frac{B \hbar}{2}}
\end{align}
$det(H-\lambda \einsmatrix) = 0 \\$
\begin{align}
\lambda_1 &= B\hbar^2 \\
\lambda_2 &= \frac{\hbar^2}{2} B (1 + \sqrt{1 + \frac{4 A^2}{\hbar^2 B^2}} \\
\lambda_3 &= \frac{\hbar^2}{2} B (1-\sqrt{1 + \frac{4 A^2}{\hbar^2 B}}
\end{align}
\begin{align}
a &:= A + \frac{\hbar B}{2} \sqrt{1+\frac{4 A^2}{\hbar^2 B^2}} \\
b &:= \frac{\hbar B}{2} \\
\ket{\phi_0} &= \inlinematrix{0 \\ 1 \\ 0} &
\ket{\phi+} &= \frac{1}{\sqrt{a^2+b^2}} \inlinematrix{a \\ 0 \\ b} &
\ket{\phi-} &= \frac{1}{\sqrt{a^2+b^2}} \inlinematrix{-b \\ 0 \\ a} \\ \\
\ket{\psi(t)} &= c_0 e^{-\i E_0 t} \ket{\phi_0} + c_+ e^{-E_+ t} \ket{\psi_+} + c_- e^{-E_-t t} \ket{\phi-} \\ % muss da nicht e^\i?
\ket{\psi(0)} &= \ket{z+} &= \inlinematrix{1 \\ 0 \\ 0} \\ \\
\end{align}
$\Rightarrow c_0 = 0$
\begin{align}
\frac{1}{\sqrt{a^2+b^2}}(c_+ a - c_- b) &\stackrel{!}{} 1 \\
\frac{1}{\sqrt{a^2+b^2}}(c_+ b + c_- a) &\stackrel{!}{} 0
\end{align}
$\Rightarrow $
\begin{align}
c_- &= \frac{-b\sqrt{a^2+b^2}}{a^2+b^2} \\
c_+ &= \frac{a\sqrt{a^2+b^2}}{a^2+b^2} \\
S_x &= \hbar \Sigma_x &= \hbar \inlinematrix{0 &1 &0 \\ 1 &0 &1 \\ 0 &1 &0}
\end{align}
Da $\inlinematrix{l \\ o \\ m} S_x \inlinematrix{n \\ o \\ p} = 0}$ folgt $S_x = S_y = 0$ %wo kommt das her, und wieso ist hier S_x=0, obwohl es oben != 0 ist
\subsection*{b)} \subsection*{b)}
\begin{align}
S_z &= \hbar \inlinematrix{1 &0 &0 \\ 0 &0 &0 \\ 0 &0 &-1}
\end{align}
\begin{align}
\dirac{\psi(t)}{S_z}{\psi(t)} &= \frac{1}{(a^2+b^2)^2} [(a^2-b^2)^2 + 4a^2b^2cos((E_+-E_-)t)]}
\end{align}
\section{Aufgabe 15: Benzol-Molekül (Teil 2)} \section{Aufgabe 15: Benzol-Molekül (Teil 2)}
\subsection*{a)} \subsection*{a)}
\begin{align}
P_m H &= \norm{\braket{\phi_m}{\psi(t)}} \\
\ket{\psi(t)} &= U(t,t_0) \ket{\psi(t)} \\ \\
&= exp(-\frac{\i}{\hbar} t H} \\
&= \sum{k=0}{5}{exp(-\frac{\i}{\hbar} t \lambda_k) \ket{\chi_k} \braket{\chi_k}{\phi_0}} \\ %warum 5?
&=^1 \frac{1}{6} \sum{k=0}{5}{\sum{n=0}{5}{exp(-\frac{\i}{\hbar} t (E-2Acos(\delta_k)))}} \\ %warum diese umformung?
P_m(t) &= \norm{\braket{\phi_m}{\psi(t)}} \\
&= \frac{1}{6} \sum{k=0}{5}{\sum{n=0}{5}{exp(...)}\braket{\phi_m}{\phi_n}} \\ %geht die summe wirklich bis 5? und über was?
&=^2 \frac{1}{36} \norm{\sum{k}{biw wo?}{exp(-\frac{\i}{\hbar} t (E-2Acos(\delta_k) + \i \delta_k)}} \\ \\
&= ?
\end{align}
(1)
\begin{align}
\braket{\chi_k}{\phi_0} &= \frac{1}{\sqrt{6}} \sum{n=0}{5}{exp(-\i n \delta_{keine ahnung}\bracket{\phi_n}{\phi_0}} \\ \\
&= \frac{1}{\sqrt{6}} e^{-\i 0 \delta_{keine ahnung}} \\
&= \frac{1}{\sqrt{6}}
\end{align}
(2)
\begin{align}
\braket{\phi_m}{\phi_n} = \delta_{n m}
\end{align}
\subsection*{b)} \subsection*{b)}
\begin{math}
\tau = \frac{2\pi}{A}\hbar
\end{math}
\section{Aufgabe 16: Schrödingergleichung in Impulsraumdarstellung} \section{Aufgabe 16: Schrödingergleichung in Impulsraumdarstellung}
\begin{align} \\
%nach schrödingergleichung in ortsdarstellung gucken
\i \hbar \partial_\tau \ket{\psi} &= H \ket{\psi} & \left| \bra{p}\right. \\
\i \hbar \partial_\t \psi(p) &= \dirac{p}{\frac{p^2}{2m}+V(\hat{x}}{\psi}
\end{align}
\begin{align}}
\int_{-\infty}^{\infty} \text{dx} \dirac{p}{V(\hat[x})}{x}\braket{x}{\psi} \\
&= \int_{-\infty}^{\infty} \text{dx} V(x) \frac{1}{\sqrt{2\pi\hbar}}e^{-\frac{\i p}{\hbar}x}\braket{x}{\psi} \\
&= \int_{-\infty}^{\infty} \text{dx} \int_{-\infty}^{\infty} \text{dp'} V(x)\frac{1}{\sqrt{2\pi\hbar}e^{-\frac{\i p}{\hbar}x}\braket{x}{p'}\braket{p'}{x} \\ \\
&= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \text{dx} \text{dp'} V(x)\frac{1}{\sqrt{2\pi\hbar}e^{-\frac{i(p-p')}{\hbar}x}\psi(p') \\
&= (2) % aus aufgabenblatt raussuchen
\end{align}
\begin{align}
%wo kommt das her?
\dirac{p}{V(\hat{x}}{\psi} &= \dirac{p}{V(\i\hbar\diffP{p}}{\psi} \\
&= V(\i\hbar\diffP{p})\psi(p) %vertauschen von p und V: Regeln?
\end{align}
\i \hbar

View File

@ -0,0 +1,71 @@
%\includegraphics{excs/qm1_blatt07_SS08.pdf}
%\pagebreak
\chapter{Quantenmechanik I - Übungsblatt 7}
\section{Aufgabe 17: Unendlich hoher Potentialtop (Ergänzungen)}
\subsection*{a)}
\subsection*{b)}
\subsection*{c)}
\section{Aufgabe 18: Tunneleffekt}
\includegraphics{grafiken/U_A18_1.pdf}
\subsection*{a)}
I
\begin{math}
-\frac{\hbar^2}{2m} \diffPs{x}^2 \Phi(x) = E \Phi(x) \\
\Phi(x) =A e^{\i k x} + B e^{-\i k x} \\
k = \sqrt{\frac{2 E M}{\hbar^2}}
\end{math}
II $E < V_0$
\begin{math}
\Phi(x) = C e^a + D e^{-qx} \\ % ist das nen q hier?
q = \sqrt{\frac{-2m(E-V_0)}{\hbar^2}}
\end{math}
III
\begin{math}
\Phi(x) = \tilde{E} e^{\i k x} + F e^{-\i k x}
\end{math}
\subsection*{b)}
\begin{math}
F = 0
\Phi_I(0) = \Phi_{II}(0) \\
A+B = C+D \\
\diffT{x} \Phi_I(0) = \diffT{x} \Phi_{II}(0) \\ % anschlussbedingungen korrekt
\i k A - \i k B = q C - q D \\
\inlinematrix{1 & 1 \\\i k & -\i k} \inlinematrix{A & B} = \inlinematrix{1 & 1 \\ q & -q} \inlinematrix{C & D} \\
\Phi_{II}(a) = \Phi_{III}(a) \\
C e^{a \cdot a} + D e^{-a \cdot a} = \tilde{E} e^{\i k a} \\
\diffT{x} \Phi_{II}(a) = \diffT{x} \Phi_{III}(a) \\
q C e^{a \cdot a} - q D e^{-a \cdot a} = \i k \tilde{E} e^{\i k a} \
\inlinematrix{e^{a \cdot a} & e^{-a \cdot a} \\ q e^{a \cdot a} & q e^{-a \cdot a}} \inlinematrix{C & D} = \inlinematrix{\tilde{E} e^{\i k a} \\ \i k \tilde{E} e^{\i k a}}
\end{math}
mit den Inversen von: (1) und (2) % geschweifte klammern unter matrix 1 und 2 setzen
\begin{math}
%mit maxima berechnet
\inlinematrix{C & D} = \inlinematrix{\frac{{e}^{{a}^{2}}}{{e}^{2 {a}^{2}}-1} & -\frac{1}{\left( {e}^{3\,{a}^{2}}-{e}^{{a}^{2}}\right) q} \\ -\frac{{e}^{{a}^{2}}}{{e}^{2{a}^{2}}-1} & \frac{{e}^{{a}^{2}}}{\left( {e}^{2 {a}^{2}}-1\right) q}} \inlinematrix{\tilde{E} e^{\i k a} \\ \i k \tilde{E} e^{\i k a}} \\
\inlinematrix{A & B} = \inlinematrix{\frac{1}{2} & -\frac{\i}{2k}\\ \frac{1}{2} & \frac{\i}{2k}} \inlinematrix{1 & 1 \\ q & -q} \inlinematrix{C & D}
\end{math}
$\inlinematrix{C & D}$ eingesetzt ergibt:
\begin{align}
\tilde{E} &= \frac{2 k a}{e^{ika} \bbracket{(q^2 - k^2) \cdot \i sinh(q \cdot a) - 2 k q cosh(qa)} \\
A &= 1 \\
T &= \bbracket{\frac{E}{A}}^2 \\
R &= 1 - T &= \bbracket{\frac{B}{A}}^2 \\
T &= \frac{1}{\bbracket{\frac{a^2 - k^2}{2 q k}} \cdot 2 sinh^2(q a) + cosh^2(q a)}
\end{align}
\subsection*{c)}
\section{Aufgabe 19: Doppeltes \delta-Potential}
\subsection*{a)}
\subsection*{b)}
\subsection*{c)}
\subsection*{d)}