was noch fehlt

This commit is contained in:
Daniel Bahrdt 2008-07-24 20:54:10 +02:00
parent 0d499809f9
commit da28ac4f5d

View File

@ -1,3 +1,12 @@
%fehlt:
% Hilberraum
% Erzeuger/vernichter
% Zeitentwicklungsoperator
% Schrödingergleichung
% undendlich dim. raum
% was zum henker ist ein operator
% impulsoperator
\chapter{Notationen} \chapter{Notationen}
\section{Dirac-Notation} \section{Dirac-Notation}
In der Bra-Ket-Notation schreibt man die Vektoren eines Vektorraums V auch außerhalb eines Skalarprodukts mit einer spitzen Klammer als Ket $\ket{v}.$ In der Bra-Ket-Notation schreibt man die Vektoren eines Vektorraums V auch außerhalb eines Skalarprodukts mit einer spitzen Klammer als Ket $\ket{v}.$
@ -8,7 +17,6 @@ $c_1$, $c_2$, $\in \setC$; $c^*$ ist die komplex-konjugierte Zahl zu $c$, $A$, $
\subsubsection*{Linearität} \subsubsection*{Linearität}
\equationblock{\langle\phi| \; \bigg( c_1|\psi_1\rangle + c_2|\psi_2\rangle \bigg) = c_1\langle\phi|\psi_1\rangle + c_2\langle\phi|\psi_2\rangle} \\ \equationblock{\langle\phi| \; \bigg( c_1|\psi_1\rangle + c_2|\psi_2\rangle \bigg) = c_1\langle\phi|\psi_1\rangle + c_2\langle\phi|\psi_2\rangle} \\
Mit der Addition und skalaren Multiplikation von linearen Funktionalen im Dual-Raum gilt: Mit der Addition und skalaren Multiplikation von linearen Funktionalen im Dual-Raum gilt:
\equationblock{\bigg(c_1 \langle\phi_1| + c_2 \langle\phi_2|\bigg) \; |\psi\rangle = c_1 \langle\phi_1|\psi\rangle + c_2\langle\phi_2|\psi\rangle} \equationblock{\bigg(c_1 \langle\phi_1| + c_2 \langle\phi_2|\bigg) \; |\psi\rangle = c_1 \langle\phi_1|\psi\rangle + c_2\langle\phi_2|\psi\rangle}