[vorlesung] kapitel II-5 fertig (bis auf bilder)
This commit is contained in:
parent
a2508b3424
commit
7aa9575f2e
123
kapII-5.tex
123
kapII-5.tex
@ -260,4 +260,127 @@ $Q_n$ ist symmetrisch für $n = 2k$, antisymmetrisch für $n = 2k + 1$ und hat $
|
||||
< \hat{p} >_\ket{n} &= 0
|
||||
\end{align}
|
||||
Wegen Ehrenfest:
|
||||
\begin{align}
|
||||
\diffT{t}< \hat{x} >(t) &= < \hat{p} >(t) \frac{1}{m}\\[15pt]
|
||||
\diffT{t}< \hat{p} >(t) &= -\left< \diffTfrac{V(x)}{x} \right>\\
|
||||
&= -m \omega < \hat{x} >(t)
|
||||
\end{align}
|
||||
|
||||
\paragraph{Grundzustand} Varianz:
|
||||
\begin{align}
|
||||
\varianz{x}{\ket{0}}^2 &\equiv \dirac{0}{(x - <x>)^2}{0} &\left(<x> = 0\right)\\
|
||||
&= \dirac{0}{x^2}{0}\\
|
||||
&= \dirac{0}{\frac{1}{2} \left( \aCr + \aDs \right)^2}{0}\\
|
||||
&= \frac{1}{2} \dirac{0}{\left( \aCr\ \right)^2 + \aCr\aDs + \aDs\aCr + \left( \aDs \right)^2}{0}\\
|
||||
&= \frac{1}{2} \dirac{0}{\aDs\aCr}{0}\\
|
||||
&= \frac{1}{2} \dirac{0}{\aDs}{1}\\
|
||||
&= \frac{1}{2} \braket{0}{0}\\
|
||||
&= \frac{1}{2}\\[15pt]
|
||||
\varianz{p}{\ket{0}}^2 &= \frac{1}{2} ~ \text{(genauso wie oben)}\\[15pt]
|
||||
\varianz{x}{\ket{0}}\varianz{p}{\ket{0}} &= \frac{1}{2} \geq \frac{1}{2} \abs{\dirac{0}{[x, p]}{0}} = \frac{1}{2}
|
||||
\end{align}
|
||||
|
||||
\section{Darstellung durch Hermitepolynome}
|
||||
\paragraph*{Definition} Sei $H_n(x)$ ein Hermitepolynom definiert durch:
|
||||
\begin{align}
|
||||
\phi_n &\equiv \sqrt{\frac{1}{2^n n! \sqrt{n}}} e^{-\frac{x^2}{2}} H_n(x)\\[15pt]
|
||||
\rightarrow H_n(x) &= e^\frac{x^2}{2} \left( \sqrt{2} \aCr \right)^n e^{-\frac{x^2}{2}}\\
|
||||
&= e^{(x^2)} \underbrace{e^{-\frac{x^2}{2}} \left( x - \diffPs{x} \right) e^\frac{x^2}{2}}_{(-1)^n \diffPfrac{^n}{x^n}} e^{(-x^2)}\\
|
||||
&= (-1)^n e^{(x^2)} \left( \diffP{x} \right)^n e^{-\frac{x^2}{2}}
|
||||
\end{align}
|
||||
Beispiele:
|
||||
\begin{equation}
|
||||
H_0(x) = 1; ~ H_1(x) = 2x; ~ H_2(x) = 4x^2 - 2
|
||||
\end{equation}
|
||||
|
||||
\subparagraph*{Eigenschaften}
|
||||
\begin{enumerate}
|
||||
\item Orthogonalität
|
||||
\begin{equation}
|
||||
\intgr{-\infty}{+\infty}{H_n(x) H_m(x) e^{(-x^2)}}{x} = \sqrt{\pi} 2^n n!
|
||||
\end{equation}
|
||||
denn:
|
||||
\begin{equation}
|
||||
\intgr{-\infty}{+\infty}{\phi_n^*(x)\phi_m(x)}{x} = \krondelta{n,m}
|
||||
\end{equation}
|
||||
\item Vollständigkeit
|
||||
\begin{equation}
|
||||
\sum_{n = 0}^{\infty} \phi_n(x)\phi_n(x') = \delta(x - x')
|
||||
\end{equation}
|
||||
\item DGL:
|
||||
\begin{equation}
|
||||
\left( \diffPs{x}^2 - 2x \diffPs{x} + 2n \right) H_n(x) = 0
|
||||
\end{equation}
|
||||
\item Erzeugende Funktion
|
||||
\begin{equation}
|
||||
\sum_{n = 0}^{\infty} \frac{t^n}{n!} H_n(x) = e^{-t^2 + 2 t x}
|
||||
\end{equation}
|
||||
\end{enumerate}
|
||||
|
||||
\section{Spektrum von $H$ aus der DGL}
|
||||
Die stationäre Schrödingergleichung ist wiefolgt:
|
||||
\begin{equation}
|
||||
\left( \frac{-\hbar^2}{2m} \diffPs{X}^2 + \frac{m}{2} X^2 \right) \Phi(X) = E \Phi(X)
|
||||
\end{equation}
|
||||
mit
|
||||
\begin{equation}
|
||||
x = \frac{X}{X_0}; ~ p = P \cdot X_0; ~ X_0 = \sqrt{\frac{\hbar}{m \omega_0}}
|
||||
\end{equation}
|
||||
Also ergibt sich:
|
||||
\begin{equation}
|
||||
\rightarrow \left( \right) \phi(x) = \varepsilon \phi(x)
|
||||
\end{equation}
|
||||
Wir suchen normierbare Lösungen $\left(\intgr{-\infty}{+\infty}{\phi^2(x)}{x} < \infty\right)$ für $x \rightarrow \pm \infty$. Wir verwenden den Ansatz
|
||||
\begin{equation}
|
||||
\phi(x) \tilde e^{-\alpha x^m}
|
||||
\end{equation}
|
||||
und erhalten
|
||||
\begin{equation}
|
||||
-\frac{1}{2} \left( (-\alpha m) (-\alpha (m - 1)) \alpha x^{m - 2} + \alpha^2 m^2 x^{2(m - 1)}\right) + \frac{1}{2}x^2 = 0
|
||||
\end{equation}
|
||||
für $x \rightarrow \infty$:
|
||||
\begin{equation}
|
||||
\phi(x) \rightarrow e^{-\frac{x^2}{2}}
|
||||
\end{equation}
|
||||
neuer Ansatz:
|
||||
\begin{equation}
|
||||
\phi(x) = e^{-\frac{x^2}{2}} \cdot u(x)
|
||||
\end{equation}
|
||||
eingesetzt in die statische Schrödingergleichung:
|
||||
\begin{align}
|
||||
-\frac{1}{2} \diffPs{x}^2(u) + \diffPs{x}(u) \cdot x + \frac{1}{2} u x^2 &= \varepsilon u ~ \text{(exakt)}\\
|
||||
\diffPs{x}^2(u) - 2x \diffPs{x}(u) + (2\varepsilon - 1) u &= 0
|
||||
\end{align}
|
||||
mit dem Ansatz
|
||||
\begin{equation}
|
||||
u(x) = \sum_{n = 0}^\infty b_n x^n
|
||||
\end{equation}
|
||||
ergibt sich
|
||||
\begin{align}
|
||||
\sum_{n=2}^\infty b_n n(n-1) x^{n-2} - 2x\sum_{n=1}^\infty b_n n x^{n-1} + (2 \varepsilon - 1) \sum_{n = 0}^\infty b^n x^n &= 0\\
|
||||
\sum_{n=0}^\infty b_{n+2} (n+2)(n+1) x^n + \sum_{n=0}^\infty b_n \left[ (2\varepsilon - 1) - 2n \right] x^n &= 0
|
||||
\end{align}
|
||||
und damit
|
||||
\begin{equation}
|
||||
b_{n+2} = \frac{2n - (2\varepsilon - 1)}{(n+2)(n+1)} b_n
|
||||
\end{equation}
|
||||
Scheinbar lässt sich für alle $\varepsilon$ eine Lösung für gegebene $b_0, b_1$ finden.\\
|
||||
\underline{Aber:} Die Lösung muss normierbar sein.
|
||||
|
||||
\begin{equation}
|
||||
\frac{b_{n+2}}{b_n} \rightarrow \frac{2}{n} ~ \text{für} ~ n \rightarrow \infty
|
||||
\end{equation}
|
||||
Mit
|
||||
\begin{equation}
|
||||
e^{\left( x^2 \right)} = \sum_k \frac{1}{k!} x^{2k} = \sum_n \frac{1}{\left(\frac{n}{2}\right)!} x^n
|
||||
\end{equation}
|
||||
für $b_n$ erhält man
|
||||
\begin{equation}
|
||||
\frac{b_{n+2}}{b_n} = \frac{\left(\frac{n}{2}\right)!}{\left(\frac{n+2}{2}\right)!} = \frac{2}{n+2} \rightarrow \frac{2}{n}
|
||||
\end{equation}
|
||||
\underline{Also:} Rekursion muss abbrechen, d.h. $b_{\tilde{n}} = 0$ für irgendein $\tilde{n}$.
|
||||
\begin{align}
|
||||
2n - (2\varepsilon - 1) &= 0\\
|
||||
\rightarrow \varepsilon &= n + \frac{1}{2}
|
||||
\end{align}
|
||||
(Quantisierung und Eigenfunktionen wir vorhin!)
|
Loading…
Reference in New Issue
Block a user