You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2302 lines
169 KiB
TeX
2302 lines
169 KiB
TeX
\input{standard}
|
|
|
|
\usepackage{tikz}
|
|
% \usetikzlibrary{automata}
|
|
|
|
\usepackage[small,nohug,heads=vee]{diagrams}
|
|
% \diagramstyle[labelstyle=\scriptstyle]
|
|
|
|
\subject{Mitschrieb der Vorlesung}
|
|
\title{Darstellungstheorie I}
|
|
\author{Wintersemester 2009/10 \\ Prof. Dr. Richard Dipper}
|
|
\publishers{Mitgeschrieben von Stefan Bühler}
|
|
|
|
\providecommand{\F}[1]{\mathcal{F}_{#1}}
|
|
\newcommand{\lsup}[2]{\ensuremath{\sideset{^{#1}}{}{\mathop{#2}}}}
|
|
\newcommand{\lsub}[2]{\ensuremath{\sideset{_{#1}}{}{\mathop{#2}}}}
|
|
|
|
\begin{document}
|
|
|
|
\maketitle
|
|
\tableofcontents
|
|
|
|
\chapter{Unknown}
|
|
|
|
\section{Unknown}
|
|
|
|
\section{Gruppenkonstruktionen und Automorphismen}
|
|
|
|
\begin{definition}
|
|
Sei $X$ eine Menge. Die Freie Gruppe $\F X$ über X wird wie folgt konstruiert: \\
|
|
Ein Wort in $\F X$ besteht aus einer endlichen Folge
|
|
$$ x_1^{\varepsilon_1} x_2^{\varepsilon_2} \ldots x_k^{\varepsilon_k}, k \leq 0, \varepsilon_i \in \set{-1, 1}, x_i \in X $$
|
|
Das leere Wort ($k = 0$) wird als $1$ notiert. \\
|
|
Ist für ein $1 \leq i < k$ in einem Wort $x_i = x_{i+1}$ und $\varepsilon_i = - \varepsilon_{i+1}$, so können wir dieses Wort verkürzen, in dem wir
|
|
$x_i^{\varepsilon_i} x_{i+1}^{\varepsilon_{i+1}}$ entfernen. \\
|
|
Wörter, die nicht mehr verkürzt werden können, heißen unverkürzbar. \\
|
|
Der transitive, symmetrische und reflexive Abschluss des "`Kürzens"' definiert eine Äquivalenzrelation; $\F X$ ist als die Gruppe mit der Menge der
|
|
Äquivalenzklassen dieser Relation definiert, wobei die Multiplikation durch Konkatenation der Vertreter definiert wird. \\
|
|
Zwei Wörter sind also äquivalent, wenn man durch Kürzen und Erweitern des einen Wortes das andere erhält. \\
|
|
$\F X$ ist Gruppe mit folgender universeller Eigenschaft: \\
|
|
\parbox{5cm}{
|
|
\begin{diagram}
|
|
X & \rInto^{i} & \F X \\
|
|
& \rdTo_{\forall f} & \dDashto_{\exists ! \hat{f}} \\
|
|
& & G
|
|
\end{diagram}
|
|
}, so dass $\hat{f} \circ i = f$ und $\hat{f}$ Gruppenhomomorphismus.
|
|
|
|
\end{definition}
|
|
|
|
\begin{definition}
|
|
Man kann das freie Produkt $G \ast H$ über den Gruppen G und H als Wörter über dem Alphabet $G \cup H$ definieren. \\
|
|
Das freie Produkt hat folgende universelle Eigenschaft: \\
|
|
Sei $\varphi: G \times H \to A$, $G, H, A$ Gruppen, $\varphi_{\mid_{G \times \set{1_H}}}$ und $\varphi_{\mid_{\set{1_G} \times H}}$ jeweils ein Gruppenhomomorphismus, $i: (g,h) \mapsto gh$: \\
|
|
\parbox{5cm}{
|
|
\begin{diagram}
|
|
G \times H & \rInto^{i} & G \ast H \\
|
|
& \rdTo_{\forall\varphi} & \dDashto_{\exists ! \hat{\varphi}} \\
|
|
& & A
|
|
\end{diagram}
|
|
}, so dass $\hat{\varphi} \circ i = \varphi$ und $\hat{\varphi}$ Gruppenhomomorphismus.
|
|
\end{definition}
|
|
|
|
\begin{definition}
|
|
Gruppen mit Erzeugenden und Relationen: $X$ eine Menge, $S \subseteq \F X$ "`Relationen"'. \\
|
|
% Dann ist $N := < \sideset{^{\F X}}{}{\mathop{S}} >$
|
|
Dann ist $N := < \lsup{\F X}{S} >$ die normale Hülle von $S$. \\
|
|
$G = \F X / N$ die Gruppe, die von $X$ mit den Relationen $S$ erzeugt wird; $G := < X \mid S >$.
|
|
\end{definition}
|
|
|
|
|
|
Beispiele:
|
|
\begin{enumerate}[i)]
|
|
\item Sei $n \in \N, C_n = \set{ 1, g, \ldots, g^{n-1} } = < x | x^n = 1 >$ \\
|
|
Bem: $\abs{X} \leq 1 \Leftrightarrow \F X $ ist kommutativ; $\F X \cong \Z \Leftrightarrow \abs{X} = 1$
|
|
\item $\sigma_n = < \set{s_i \mid 1 \leq i < n} \mid s_i s_j = s_j s_i \text{ für } \abs{i-j} \leq 2, s_i^2 = 1, s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} > $
|
|
|
|
Beachte: \\
|
|
$ T \leq S \leq \F X \Rightarrow U := < \lsup{\F X}T > \leq < \lsup{\F X}S > =: V $ \\
|
|
$ \mathop{\Longrightarrow}{\text{1. Iso Satz}} \exists \text{ Epimorphismus } \F X / U \twoheadrightarrow \F X / v $
|
|
|
|
\item Die endlichen einfachenGruppen sind (durchweg?) von 2 Elementen erzeugt.
|
|
\item Sei $G$ Gruppe. Wähle $X = G$, nach universeller Eigenschat $\exists !$ Epimorphismus $\F G \twoheadrightarrow G$ mit Kern $N \Rightarrow G = \F G / N$
|
|
\end{enumerate}
|
|
~
|
|
|
|
\begin{definition}
|
|
Seien $G, H$ Gruppen. Das direkte Produkt $G \times H$ ist das kartesische Produkt mit komponentenweiser Multiplikation. \\
|
|
$ G \cong \tilde{G} := G \times \set{1_H} \trianglelefteq G \times H \trianglerighteq \set{1_G} \times H =: \tilde{H} \cong H $ \\
|
|
$ forall g \in \tilde{G}, h \in \tilde{H}: gh = hg \Rightarrow \tilde{G}\tilde{H} = \tilde{H}\tilde{G} = G \times H, \tilde{G} \cap \tilde{H} = \set{1_{G \times HJ}} $ \\
|
|
$ \Rightarrow $ Wir müssen nicht zwischen exterem und internem Produkt unterscheiden. \\
|
|
$ \abs{G \times H} = \abs{G} \abs{H} $
|
|
\end{definition}
|
|
|
|
Betrachte $H, N \leq G, N \trianglelefteq G \Rightarrow HN = NH, HN \leq G$ \\
|
|
Sei zusätzlich $HN = G, H \cap N = \set{1}$ \\
|
|
Sei $n \in N$. Wegen $nHn^{-1} = H$ ist $c_n: H \rightarrow H: h \mapsto \lsup n h = n h n^{-1}$ ein Automorphismus von $H$. \\
|
|
$n \mapsto c_n$ ist Gruppenhomomorphismus $N \rightarrow \Aut(H)$.
|
|
~
|
|
|
|
\begin{satz}
|
|
Sei $g \in G, c_g: G \rightarrow G: h \mapsto \lsup g h$ Automorphismus von G. Die Menge $\Inn(G) := \set{ c_g \mid g \in G} \subseteq \Aut(G) $ ist Normalteiler von $\Aut(G)$. \\
|
|
$\Out(G) := \Aut(G) / \Inn(G)$ (Gruppe der äußeren Automorphismen von G) \\
|
|
Die Abbildung $c: G \rightarrow Aut(G): g \mapsto c_g$ ist Gruppenhomomorphismus mit Bild $\Inn(G)$ (klar) und $\ker c = Z(G) := \set{g \in G \mid gh = hg \forall h \in G} $ \\
|
|
Also ist $G / Z(G) \cong \Inn(G)$
|
|
\end{satz}
|
|
|
|
\begin{bew}
|
|
Sei $g, h_1, h_2 \in G$ \\
|
|
$c_g(h_1 h_2) = g h_1 h_2 g^{-1} = g h_1 g^{-1} g h_2 g^{-1} = c_g(h_1) c_g(h_2)$ \\
|
|
$c_{g^{-1}} \circ c_g (h) = g^{-1} g h g^{-1} g = 1 h 1^{-1} = c_1(h) = id_H $ \\
|
|
Also ist $c_g$ bijektiv und daher Automorphismus von $G$.
|
|
|
|
$c: g \rightarrow \Aut(G)$ ist Homomorphismus: \\
|
|
$c_{g_1} \circ c_{g_2} (h) = g_1 g_2 h g_2^{-1} g_1^{-1} = g_1 g_2 h (g_1 g_2)^{-1} = c_{g_1 g_2} (h) $ \\
|
|
\begin{align*}
|
|
c_g = id_G & \Leftrightarrow c_g(h) = h \forall h \\
|
|
& \Leftrightarrow g h g^{-1} = h \forall h \\
|
|
& \Leftrightarrow g h = h g \forall h \\
|
|
& \Leftrightarrow g \in Z(G) \\
|
|
& \Rightarrow \ker c = Z(G)
|
|
\end{align*}
|
|
|
|
Da $\im c = \Inn(G)$ ist $\Inn(G) \leq \Aut(G)$. \\
|
|
Sei $\varphi \in \Aut(G), g \in G$: Zu zeigen: $\varphi \Inn(G) \varphi^{-1} = \Inn(G) \Leftrightarrow \varphi c_g \varphi^{-1} \in \Inn(G) \forall g, \varphi$ \\
|
|
$(\varphi c_g \varphi^{-1})(h) = \varphi(g \varphi^{-1}(h) g^{-1}) = \varphi(g) h \varphi^{-1}(g) = \varphi(g) h \varphi(g)^{-1} = c_{\varphi(g)}(h) \forall h \in G$ \\
|
|
$ \Rightarrow \varphi c_g \varphi^{-1} = c_{\varphi(g)} \in \Inn(G)$ \\
|
|
Also ist $\Inn(G) \trianglelefteq \Aut(G)$
|
|
\end{bew}
|
|
|
|
Beachte: Sei $N \leq G$. Dann ist $N \trianglelefteq G \Leftrightarrow c_g(N) = N \forall g \in G$ \\
|
|
($\Rightarrow {c_g}_{\mid_N} \in \Aut(N)$. $c_g$ ist $\in \Inn(N) \Leftrightarrow \exists n \in N: c_g = c_n$)
|
|
|
|
\begin{definition}
|
|
Sei $H < G$. Dann ist $H$ charakteristisch in $G$, falls $\varphi(H) = H \forall \varphi \in Aut(G)$.\\
|
|
Klar: $H$ char. in $G \Rightarrow H \trianglelefteq G$. \\
|
|
\end{definition}
|
|
|
|
Beispiel: \\
|
|
$Z(G)$ ist char. in $G$: \\
|
|
$\forall z \in Z(G), g \in G: \varphi(g)\varphi(z) = \varphi(gz) = \varphi(zg) = \varphi(z)\varphi(g) $ \\
|
|
$\Rightarrow \varphi(z)G = G \varphi(z) $ \\
|
|
$\Rightarrow \varphi(z) \in Z(G)$
|
|
\ \\
|
|
|
|
\begin{satz} % 1.2.3
|
|
% Und: $H \mathop{\leq}\limits_\text{char.} N \mathop{\leq}\limits_\text{char.} G \Rightarrow H \mathop{\leq}\limits_\text{char.} G$
|
|
Seien $K \leq H \leq G$, $K$ charakteristisch in $H$, $H$ char. in $G$. Dann ist
|
|
$K$ char. in $G$.
|
|
\end{satz}
|
|
|
|
\begin{bew} % 1.2.4
|
|
Sei $\varphi \in \Aut(G)$. Zu zeigen: $\varphi(K) = K$. \\
|
|
$\varphi \in \Aut(G) \Rightarrow_{\text{H char. in G}} \varphi(H)( = H \Rightarrow_{\mid_H} \in \Aut(H) \Rightarrow \varphi(K) = \varphi_{\mid_K} = K$, da $K$ char. in $H$ ist.
|
|
Also ist $K$ char. in $G$.
|
|
\end{bew}
|
|
|
|
\begin{bem}
|
|
Sei $S \subseteq G$ mit $S^{-1} = S$ und $\varphi(S) = \set{\varphi(s) \mid s \in S} = S$ für alle $\varphi in \Aut(G)$ ($\Inn(G)$). Dann ist $<S> \leq G$ char. (normal) in $G$.
|
|
\end{bem}
|
|
|
|
|
|
\begin{definition}
|
|
Sei $G$ Gruppe, $a, b \in G$. Dann ist $[a,b] = aba^{-1}b^{-1}$ der Kommutator von $a$ und $b$ ($[a,b]ba = aba^{-1}b^{-1}ba = ab$). \\
|
|
Die Untergruppe $G' := < [a,b] \mid a, b \in G > \leq G$ heißt Kommutatoruntergruppe von $G$.
|
|
\end{definition}
|
|
|
|
\begin{satz} % 1.2.5
|
|
Sei $G$ Gruppe. Dann ist $G'$ char. in $G$ (weil $\varphi[a,b] = [\varphi[a], \varphi[b]] \forall \varphi \in \Aut(G)$ ebenfalls Kommutator ist, und $[a,b]^{-1} = [b, a]$). \\
|
|
$G'$ ist der kleinste Normalteiler von $G$, so dass $G / G'$ abelsch ist (d.h. ist $N \trianglelefteq G, G/N$ abelsch $\Rightarrow N \supseteq G'$).
|
|
\end{satz}
|
|
|
|
\begin{bew}
|
|
Siehe Algebra. ($\pi: G \rightarrow G/N: g \mapsto gN, \pi[a,b] = [\pi(a), \pi(b)] = \ldots d G/N = N$),
|
|
\end{bew}
|
|
|
|
\begin{definition}
|
|
Seien $N, H \leq G, N \trianglelefteq G, G = NH = HN, H \cap N = \set{1}$. dann heißt $G$ (internes) semidirektes Produkt von $N$ mit $H$. Wir schreiben $G = N \rtimes H$.
|
|
\end{definition}
|
|
|
|
Beobachtungen: % 1.2.6
|
|
\begin{enumerate}[a)]
|
|
\item $ G/N = NH / N \cong H /_{N \cap H} \cong H$. Also ist $G/N \cong H$. Daher ist $\abs{G} = \abs{N}\abs{G/N} = \abs{N} abs{H} = \abs{N \times H} $
|
|
\item $G = N \cdot H \Rightarrow \forall x \in G \exists n \in N \exists h \in H: x = n \cdot h $. Diese Darstellung ist eindeutig: denn seien $n_1,n_2 \in N, h_1,h_2 \in H$ und sei $n_1 h_1 = n_2 h_2$,
|
|
so folgt $n_2^{-1} n_1 = h_2 h_1^{-1} \in N \cap H \Rightarrow n_2^{-1} n_1 = h_2 h_1^{-1} = 1 \Rightarrow n_1 = n_2, h_1 = h_2 $
|
|
\item Allgemein gilt: $H, N \trianglelefteq G, H \cap N = \set{1} \Rightarrow hn = nh \forall n \in N, h \in H$, denn seien
|
|
$h \in H, n \in N \Rightarrow [n, h] = nhn^{-1}h^{-1} = \mathop{(nhn^{-1})}\limits_{\in H \trianglelefteq G}h^{-1} \in H \cap N = \set{1} $ (die Klammerung analog für $N$) \\
|
|
Daher: Ist $G = N \rtimes H$ und zusätzlich $H \trianglelefteq G \Rightarrow G = H \times N$ (da $n_1 h_1 n_2 h_2 = n_1 n_2 h_1 h_2$)
|
|
\item $G = N \rtimes H, x = n_1 h_1, y = n_2 h_2 \in G \Rightarrow x \cdot y = n_1 h_1 n_2 h_2 = n_1 \mathop{(h_1 n_2 h_1^{-1})}\limits_{\in N \trianglelefteq G} h_1 h_2 = (n_1 \lsup{h_1}n_2) (h_1 h_2) = n' h' $ die eindeutige Darstellung vom Produkt $ x \cdot y $ als Produkt eines Elementes aus $N$ mit einem Element aus $H$. \\
|
|
Die Abb. $\varphi: H \rightarrow \Aut(N): h \mapsto \varphi(h) = \lambda n . \lsup{h}{n} = \varphi_n = {c_n}_{\mid_N} \in \Aut(N)$ ist Gruppenhomomorphismus. \\
|
|
\item Multiplikation in $G$ wird vollständig auf die Multiplikation in $N$ und Multiplikation in $H$ und auf $\varphi$ zurückgeführt: $n_1 h_1 n_2 h_2 = n_1 \varphi_{h_1}(n_2) h_1 h_2 $
|
|
\item Ist $\varphi: H \rightarrow \Aut(N)$ der triviale Homomorphismus, so ist $\varphi_n = {c_n}_{\mid_N} = id_N$ für alle $h \in H$, d.h. $\varphi_h(n) = h n h^{-1} = n \Leftrightarrow hn = nh$. Dann ist $H \trianglelefteq G und G \cong H \times N$. \\
|
|
Daher: Ist $\varphi : H \rightarrow \Aut(N)$ \underline{nicht} tirivial, so kann $G$ nicht abelsch sein. ($\varphi(h) = \varphi_h \neq id_N, h\in H, \Rightarrow n \in N: \varphi_h(n) = hnh^{-1} \neq n \Rightarrow hn \neq hn$)
|
|
\end{enumerate}
|
|
|
|
\begin{definition}
|
|
Seien $H, N$ Gruppen, und sei $\varphi: H \rightarrow \Aut(N): j \mapsto \varphi(h) = \varphi_h \in \Aut(N) $ ein Homomorphismus. \\
|
|
Wir definieren das (äußere) semidirekte Produkt $G = N \rtimes H$ wie folgt: \\
|
|
Als \underline{Menge} ist $G$ einfach das kartesische Produkt $N \times H$. \\
|
|
Sei $n_1,n_2 \in N, h_1, h_2 \in H:$ \\
|
|
$(n_1, h_1) \cdot (n_2, h_2) := (n_1 \cdot \varphi_{h_1}(n_2), h_1 \cdot h_2)$ \\
|
|
\end{definition}
|
|
|
|
\begin{satz} % 1.2.7
|
|
Mit obiger Multiplikation wird $G = N \times H$ zur Gruppe $N \rtimes H$ mit Einselement $1_G = (1_N, 1_H)$ und Inverser $(n, h)^{-1} = (\varphi_{h^{-1}}(n^{-1}), h^{-1})$ \\
|
|
Seien $\tilde{N} = N \times \set{1_H} \subseteq N \times H $ und $\tilde{H} = \set{1_N} \times H \subseteq N \times H$. \\
|
|
Dann ist $\tilde{N} \trianglelefteq G, H \leq G, \tilde{N} \cong N, \tilde{H} \cong H$ und $G = \tilde{N} \rtimes \tilde{H}$ (intern).
|
|
Für $\tilde{h} = (1_N, h) \in \tilde{H}, \tilde{n} = (n, 1_H) \in \tilde{N}, h \in H, n \in N$ ist $\tilde{h}^{-1} \tilde{n} \tilde{h} = (\varphi_h(n), 1_H)$, d.h. ${c_{\tilde{n}^{-1}}}_{\mid_{\tilde{N}}} \leftrightarrow \varphi_h \in \Aut(N)$
|
|
\end{satz}
|
|
|
|
\begin{bew}
|
|
Übung.
|
|
\end{bew}
|
|
|
|
\begin{bem}
|
|
Sind $\varphi, \psi$ verschiedene Homomorphismen von $H \rightarrow \Aut(N)$, so können $N \rtimes_\varphi H, N \rtimes_\psi H$ isomorph oder nicht isomorph sein.
|
|
\end{bem}
|
|
|
|
\begin{bsp}
|
|
$C_n (\cong (\Z /_{n\Z}, +)) = N, H = C_2 = \set{1, h}$ \\
|
|
$\varphi: H \in \Aut(C_n)$ durch $\varphi(1) = id_{C_n}, \varphi_h(x) = x^{-1} $ \\
|
|
Die Gruppe $D_{2n} := C_n \rtimes_\varphi C_2$ heißt \underline{Diedergruppe} der Ordnung $2n$. \\
|
|
$D_{2n}$ ist die Gruppe der Symmetrien eines regelmäßigen $n$-Ecks; $C_n \trianglelefteq D_{2n}$ ist die Gruppe der Rotationen, $C_2 = D_{2n} /_{C_n}$ sind die Spiegelungen. \\
|
|
$D_{2n} = < x, y \mid x^n = y^2 = 1, yxy = x^{-1} >$
|
|
\end{bsp}
|
|
|
|
\section{Operationen von Gruppen auf Mengen}
|
|
|
|
Im folgenden sei: $G = $ Gruppe, $X = $ Menge, $\sigma_X = \set{ f : X \rightarrow X \mid f \text{bij. Abb.}} = $ "`symmetrische Gruppe auf X"'.
|
|
|
|
\begin{definition}
|
|
Eine (Links-)Operation von $G$ auf $X$ ist eine (externe) Verknüpfung
|
|
$$G \times X \rightarrow X: (g,x) \mapsto gx$$
|
|
so dass gilt:
|
|
\begin{enumerate}[i)]
|
|
\item $1_G \cdot x = x \forall x \in X$
|
|
\item $(gh) \cdot x = g \cdot (h \cdot x)$
|
|
\end{enumerate}
|
|
Wir sagen: "`$G$ operiert auf $X$"' (durch Permutationen) oder kurz: "`$X$ ist $G$-Menge"'. (Analog: Rechtsoperation: $X \times G \rightarrow X$)
|
|
\end{definition}
|
|
|
|
\begin{bem}
|
|
Ist $X$ $G$-Menge, $\sigma_X$ = symmetrischeGrupe auf $X$, so wird durch $\lambda: G \rightarrow \sigma_X: g \mapsto \lambda_g \in \sigma_X$ ein Gruppenhomomorphismus
|
|
$\lambda$ definiert, wobei $\lambda_g: X \rightarrow X: x \mapsto g \cdot x$; denn: \\
|
|
Sei $g \in G: \lambda_g \lambda_{g^{-1}} : x \mapsto g (g^{-1} x) = (g g^{-1}) x = 1_G x = x \forall x \in X$, also ist $\lambda_g$ bijektiv und $\in \sigma_X$. \\
|
|
Seien $g, h \in G \Rightarrow \lambda_g \circ \lambda_h (x) = \lambda_g (\lambda_h(x)) = g \cdot (h \cdot x) = (g \cdot h) \cdot x = \lambda_{gh}(x) \forall x \in X \Rightarrow \lambda_g \lambda_h = \lambda_{gh}$, d.h. $\lambda$ ist Homomorphismus. \\
|
|
\underline{Umgekehrt:} Sei $\varphi: G \rightarrow \sigma_X$ homomorph. Dann wird durch $g \cdot x := (\varphi(g))(x)$ eine Operation von $G$ auf $X$ definiert, mit $\lambda = \varphi$ (Beweis: Übung). \\
|
|
$\lambda$ heißt "`die zur $G$-Menge $X$ gehörende \underline{Darstellung} von $G$"'. \\
|
|
\underline{Also:} Das Konzept der $G$-Mengen $X$ ist äquivalent zum Konzept der Homomorphismen $G \rightarrow \sigma_X$. \\
|
|
(Im Falle der Rechtsoperation: Entweder op $\sigma_X$ auch von rechts, oder die zug. Darst. $\rho: G \rightarrow \sigma_X$ ist ein Antihomomorphismus)
|
|
\end{bem}
|
|
|
|
{\it Beispiele:} (Running Gag) % 1.3.1
|
|
\begin{enumerate}[1.)]
|
|
\item $\sigma_X$ operiert auf $X$ mit Darstellung $id_{\sigma_X} : \sigma_X \rightarrow \sigma_X: \pi \mapsto \pi \in \sigma_X, \pi x = \pi(x) \forall x \in X$
|
|
\item $G$ operiert auf der Menge $G$ durch Linkstranslation $ g \cdot h = g h$. \\
|
|
\underline{Darstellung:} $\lambda G \rightarrow \sigma_G: g \mapsto \lambda_g; \lambda_g: h \mapsto gh \forall h \in G$ \\
|
|
($\abs{\sigma_G} = \abs{G} !$)
|
|
\item $G$ operiert auf $G$ durch Konjugation: \\
|
|
$$ g \cdot h = \lsup{g}{h} = g h g^{-1} [ = c_g(h) ] $$
|
|
\item Sei $H \leq G$, $G = \bigcup\limits^{.}_{i \in I} g_i H$ \\
|
|
Wir definieren eine Operation von $G$ auf der \underline{Menge} $G / H$ der Nebenklassen von $H$ in $G$ durch: $g (g_i H) = g_j H$ (bzw. auf $I: g \dot i = j$) \\
|
|
(Linkstranslation auf $G/H$, Rechtsnebenklassen $H \without G$ durch Rechtstranslation) \\
|
|
Spezialfall: $H = (I) \Rightarrow $ Operation von $G$ auf $G / H = G / (I) = G$ aus 2.)
|
|
\end{enumerate}
|
|
|
|
4.) ist die Mutter aller $G$-Operationen auf Mengen.
|
|
\begin{definition}
|
|
Eine Operation von $G$ auf $X$ heißt \underline{treu}, falls gilt: Ist $gx = x \forall x \in X \Rightarrow g = 1$.
|
|
Offensichtlich heißt dies für die zugehörige Darstellung $\varphi: G \rightarrow \sigma_X$, dass $\varphi$ injektiv ist;
|
|
denn $gx = x \forall x \in X \Leftrightarrow (\varphi(g))(x) = x \forall x \in X \Leftrightarrow \varphi(g) = id_X \Leftrightarrow g \in \ker \varphi$ \\
|
|
So: $\ker \varphi = \set{g \in G \mid gx = x \forall x \in X }.$
|
|
\end{definition}
|
|
|
|
{\it Beispiele:} % aus 1.3.1
|
|
1.), 2.) treu, da $g \cdot h = h \forall h \in G \Leftrightarrow g = 1$ \\
|
|
3.) (i.A.) nicht treu. Genauer: $\ker \varphi = \ker c_? = \set{g \in G \mid c_g = id_G } = \set{g \in G \mid c_g(h) = h \forall h \in G } = \set{g \in G \mid g hg^{-1} = h \forall h \in G} = Z(G)$ Zentrum von $G$.
|
|
|
|
\underline{Klar:} $X$ treue $G$-Menge, so enthält $\sigma_X$ durch die zugehörige Darstellung $\varphi: G \rightarrow \sigma_X$ eine zu $G$ isomorphe Untergruppe.
|
|
|
|
\begin{definition}
|
|
Seien $X, Y$ $G$-Mengen. Eine Abbildung $\varphi: X \rightarrow Y$ heißt $G$-Homomorphismus (auch $G$-equivariant) falls gilt: \\
|
|
$\forall x \in X, g \in G: \varphi(g, x) = g \varphi(x)$ \\
|
|
\underline{Wie üblich}: Epi-, Mono- und Isomorphismen. \\
|
|
Komposition (und Inversen falls bijektiv) sind wieder Homomorphismen. \\
|
|
Isosätze etc. \\
|
|
Also: Kategorie der $G$-Mengen.
|
|
\end{definition}
|
|
|
|
\underline{Übersetzung für Darstellungen}:\\
|
|
Seien $\varphi: G \rightarrow \sigma_X, \psi: G \rightarrow \sigma_Y$ ($X, Y$ Mengen) Darstellungen. \\
|
|
Ein Morphismus von $\varphi$ nach $\psi$ ist eine Mengenabbildung $f: X \rightarrow Y$, so dass $\forall g \in G$ das folgende Diagramm kommutiert:
|
|
\begin{diagram}
|
|
X & \rTo^{f} & Y \\
|
|
\dTo^{\varphi(g)} & & \dTo_{\psi(g)} \\
|
|
X & \rTo^{f} & Y
|
|
\end{diagram}
|
|
|
|
d.h. $f \circ \varphi(g) = \psi(g) \circ f \Leftrightarrow \psi(g) \circ f \circ \varphi(g)^{-1} = f \forall g \in G$
|
|
|
|
Dies macht die Klasse der (Permutations-) Darstellungen zu einer Kategorie. Diese ist isomoprh zur Kategorie der $G$-Mengen (Beweis: Übung).
|
|
|
|
\underline{Ziel:} Klassifikation von $G$-Mengen.
|
|
|
|
\begin{definition}
|
|
$X, Y$ $G-$ Mengen:
|
|
\begin{enumerate}[a)]
|
|
\item Die disjunkte Vereinigung $X \mathop{\cup}\limits^{\cdot} Y$ wird zur $G$-Menge durch $g \cdot z = \left\{ \matr{gx & \text{für } z = x \in X \\ gy & \text{für } z = y \in Y} \right. $ \\
|
|
("`direkte Summe"', "`Koprodukt"' in Kategorie der $G$-Mengen)
|
|
\item Das kartesische Produkt $X \times Y$ wird zu $G$-Menge durch $g \cdot (x,y) = (gx, gy) \forall x \in X, y \in Y, g \in G$
|
|
\item $\sigma_X$ wird $G$-Menge durch $gZ = \set{gz \mid z \in Z}$ für $Z \subseteq X$
|
|
\end{enumerate}
|
|
\end{definition}
|
|
|
|
\begin{definition} % 1.3.3
|
|
Sei $X$ eine $G$-Menge, $x \in X$. Die \underline{Bahn} (Orbit) $Gx (\lsup{G}x)$ ist $\set{gx \mid g \in G} \subseteq X$, und der Stabilisator $Stab_G(x)$ in $G$ von $x$ ist $\set{g \in G \mid gx = x} \subseteq G$. \\
|
|
Für $S \subseteq G$ ist der $Stab_G(X) = \set{g \in G \mid gs \in S \forall s \in S }$ \\
|
|
Der \underline{Punktstabilisator} von $S$ in $G$ ist $PStab_G(S) = \set{g \ in G | gs = s \forall s \in S} = \bigcap\limits_{s \in S} Stab_G(s)$ \\
|
|
\underline{Klar:}
|
|
\begin{enumerate}
|
|
\item $Stab_G(x), Stab_G(S), PStab_G(S)$ sind Untergruppen von $G$.
|
|
\item Die Einschränkung von der $G$-Operation auf die Bahn $Gx$ macht die Bahn $Gx$ von $x$ zur $G$-Menge. \\
|
|
Wir definieren eine Äquivalenzrelation $\sim_G$ auf $X$ durch $x \sim_G y \Leftrightarrow \exists g \in G: y = gx$ \\
|
|
Die Äquivalenzklasse von $x \in X$ ist die Bahn $Gx$. \\
|
|
Konsequenz: $X$ ist die direkte Summe der Bahnen von $G$ auf $X$.
|
|
\end{enumerate}
|
|
\end{definition}
|
|
|
|
\begin{definition}
|
|
$G$ operiert (einfach) \underline{transitiv} auf $X$, falls nur eine Bahn existiert, d.h. $\forall x, y \in X: \exists g \in G: x = g y$.
|
|
\end{definition}
|
|
|
|
{\it Beispiele:} von 1.3.1
|
|
\begin{enumerate}[A)]
|
|
\item Bahnen:
|
|
\begin{enumerate}[1.)]
|
|
\item $G$ ist die einzige Bahn.
|
|
\item $\forall h_1, h_2 \in G \exists g \in G: h_2 = g h_1: g := h_2 h_1^{-1}$, also: $G$ ist die einzige Bahn.
|
|
\item $g \sim_G h \Leftrightarrow \exists x in G: h = x g x^{-1} \Leftrightarrow g$ und $h$ sind konjugiert $\Leftrightarrow$ Bahnen sind Konjugationsklassen.
|
|
\item Eine Bahn. $g,h \in G \Rightarrow \exists x \in G: h = xg \Rightarrow hH = xgH$
|
|
\end{enumerate}
|
|
\item Stabilisatoren:
|
|
\begin{enumerate}[1.)]
|
|
\item $x \in X: Stab_{\sigma_X}(x) = \set{ \pi \in \sigma_X \mid \pi(x) = x } = \sigma_{X \without \set{x}}$, z.Bsp. $Stab_{\sigma_n}(n) = \sigma_{n-1}$ \\
|
|
$Stab_{\sigma_n}(\set{1, \ldots, i}) = \set{ \pi \in \sigma_n | 1 \leq \pi(j) \leq i \forall 1 \leq j \leq i } = \sigma_{\set{1, \ldots, i}} \times \sigma_{\set{i+1, \ldots, n}}$
|
|
\item $h \in G: Stab_G(h) = \set{g \in G \mid gh = h} = \set{ 1 }$
|
|
\item $h \in G: Stab_G(h) = \set{g \in G \mid \lsup{g}{h} = h} = \set{g \in G \mid ghg^{-1} = h} = \set{g \in G \mid gh = hg } = $ Zentralisator von $h$ in $G$.
|
|
\item Spezialfall $Stab_G(1 \cdot H) = \set{ g \in G \mid gH = H} = H$
|
|
\end{enumerate}
|
|
\end{enumerate}
|
|
|
|
\begin{lemma}
|
|
Sei $X$ $G$-Menge, $x \in X, g \in G$: Dann ist $Stab_G(gx) = g \cdot Stab_G(x() \cdot g^{-1}$ ("`konjugierte Untergruppe"')
|
|
\end{lemma}
|
|
\begin{bew}
|
|
"`$\supseteq$"' Sei $h = gfg^{-1} \in $ rechte Seite $\Rightarrow h(gx) = gfg^{-1}gx = gfx = gx \Rightarrow h \in $ linke Seite.
|
|
"`$\subseteq$"' Sei $h \in Stab_G(gx)$, d.h. $h(gx) = gx \Rightarrow g^{-1}hgx = x \Rightarrow g^{-1} h x = f \in Stab_G(x) \Rightarrow h = g f g^{-1} \in g Stab_G(x) g^{-1}$
|
|
\end{bew}
|
|
|
|
{\it Beispiele:} von 1.3.1, Stabilisator für 4.): \\
|
|
$ Stab_G(xH) = x H x^{-1} $
|
|
|
|
Neues Beispiel für 1.3.1:
|
|
\begin{enumerate}
|
|
\item[5.)] Sei $X = \set{H \leq G}$. Dann operiert $G$ auf $X$ durch Konjugation $lsup{g}{H} = g H g^{-1}$ \\
|
|
$Stab_G(H) = \set{g \in G \mid g H g^{-1} = H } = N_G(H)$ der \underline{Normalisator} von $H$ in $G$ (die größte Untergruppe von $G$ in der $H$ normal ist, $H \trianglelefteq N_G(H) \leq G$)
|
|
\end{enumerate}
|
|
|
|
\begin{bem}
|
|
Bahnen sind in 5.) Konjugationsklassen von Untergruppen. \\
|
|
Beachte: $\abs{c_g(H)} = \abs{gHg^{-1}} = \abs{H}$
|
|
\end{bem}
|
|
|
|
\begin{satz} % 1.3.5
|
|
Jede $G$-Menge ist (eindeutig) disjunkte Vereinigung (direkte Summe) von transitiven $G$-Mengen, nämlich der Bahnen von $G$ auf der Menge.
|
|
\end{satz}
|
|
|
|
\begin{satz} % 1.3.6
|
|
Sei $X$ transitive $G$-Menge und $x \in X, H = Stab_G(x)$. Dann ist $X \cong G / H$ ($ = G$-Menge der Nebenklassen von $H$ in $G$ durch Linkstranslation, siehe Beispiel 4. aus 1.3.1)
|
|
\end{satz}
|
|
|
|
\begin{bew}
|
|
Definiere $\varphi: G/H \rightarrow X: gH \mapsto g x$ für $g \in G$.
|
|
\begin{enumerate}[1.)]
|
|
\item $\varphi$ ist wohldefiniert: Denn sei $gH = fH \Rightarrow f^{-1}g \in H \Rightarrow f^{-1}gx = x$, da $H = Stab_G(x)$ ist $\Rightarrow gx = fx$
|
|
\item Umgekehrt gehts auch: Sei $fx = gx$ ($f, g \in G$) $\Rightarrow x = f^{-1}gx \Rightarrow f^{-1}g \in H \Rightarrow gH = fH$ Also ist $\varphi$ injektiv.
|
|
\item Wegen $G \cdot x = X$ ist $\varphi$ surjektiv.
|
|
\item Seien $a, g \in G:$ Dann ist $a \varphi(gH) = a(gx) = (ag)x = \varphi(agH)$, also ist $\varphi$ ein Isomorphismus von $G$-Mengen.
|
|
\end{enumerate}
|
|
\end{bew}
|
|
|
|
\begin{korr} % 1.3.7
|
|
$\abs{X} = \abs{G/H} = \left[G : H \right] $ \\
|
|
\underline{Allgemein}: Sei $X$ $G$-Menge, $x \in X \Rightarrow \abs{Gx} = \abs{G : Sta_G(x)}$ (Bahngleichung)
|
|
\end{korr}
|
|
|
|
Wir haben jetzt is aus Isomorphie alle $G$-Mengen konstruiert, nämlich als disjunkte Vereinigunge (direkte Summen) von $G$-Mengen der Form $G/H$ mit $H \leq G$. \\
|
|
\underline{Frage:} Sind $H, K \leq G$. Wann ist $G/H \cong G/K$ als $G$-Menge (unter Linkstranslation)?
|
|
|
|
\begin{lemma} % 1.3.8
|
|
Seien $X, Y$ $G$-Mengen, $\varphi:X \rightarrow Y$ Homomorphismus, und sei $x \in X$. Dann ist $\Stab_G(x) \leq \Stab_G(\varphi(x)$ \\
|
|
Insbesondere: ist $\varphi$ ein Isomorphismus, so ist $\Stab_G(x) = \Stab_G(\varphi(x))$.
|
|
\end{lemma}
|
|
|
|
\begin{bew}
|
|
$g \in G: gx = x \Rightarrow g (\varphi(x)) = \varphi(gx) = \varphi(x) \Rightarrow g \in \Stab_G(\varphi(x))$
|
|
\end{bew}
|
|
|
|
\begin{satz} % 1.3.9
|
|
Seien $H, K \leq G$. Dann ist $G/H \cong G/K \Leftrightarrow H \mathop{=}_G K$ (d.h. $\exists g \in G: gKg^{-1} = H$).
|
|
\end{satz}
|
|
|
|
\underline{Bemerkung:} 1.3.6 + 1.3.9 liefert die Klassifikation der $G$-Mengen.
|
|
|
|
\begin{bew}
|
|
Sei $\varphi: G/H \rightarrow G/K$ ein Isomorphismus von $G$-Mengen,
|
|
$(\exists x \in G): varphi(1 \cdot H) = xK \Rightarrow \Stab_G(1 \cdot H) = H = \Stab_G(xK) = x\Stab_G(1\cdot K) x^{-1} = xKx^{-1}$. Also ist $H =_G K$. \\
|
|
Umgekehrt ist $H =_G K$, etwa $K = x H x^{-1}$. Dann ist (nach 1.3.4) $K = \Stab_G(xH)$, und $G/K \cong G/H$ nach 1.3.6
|
|
\end{bew}
|
|
|
|
\begin{definition}
|
|
Sei $k \in \N, X$ $G$-Menge. Dan heißt $X$ $k$-fach transitiv ($k$-trans.) falls gilt: Sind $x_1, \ldots, x_k \in X$ und $y_1, \ldots, y_k \in X$ jeweils beliebige aber paarweise verschieden, so gibt es $g \in G: y_i = g x_i \forall 1 \leq i \leq k$ \\
|
|
(Klar: $G$ operiert auf $X^{\times k} = X \times \ldots \times X$ k-trans. $\Leftrightarrow G$ operiert auf $\set{ (x_1, \ldots, x_k) \in X^{\times k} \mid x_i \text{ paarweise verschieden}}$ transitiv. 1-transitiv = transitiv)
|
|
\end{definition}
|
|
|
|
\begin{satz} % 1.3.10
|
|
Sei $X$ 2-transitive $G$-Menge, $x \in X$. Dann ist $\Stab_G(x)$ maximale Untergrupe von $G$.
|
|
\end{satz}
|
|
|
|
\begin{bew}
|
|
2-transitiv $\Rightarrow X$ ist transitiv $\Rightarrow X \cong G/H$ für $H = \Stab_G(X)$. Angenommen, $H$ st nicht maximal in $G$. Sei $H < K < G, g \in G, g \notin K, k \in K, k \notin H$.
|
|
Dann ist $kH \neq H, gH \neq H$. Wir hben also zwei Paare $(H, kH)$ und $(H, gH)$. 2-transitiv $\Rightarrow \exists f \in G: f \cdot (1 H) = (1 H), f (k H) = g H \Rightarrow f \in H \Rightarrow fk \in K
|
|
\Rightarrow \exists h \in H: fk = gh \Rightarrow K = f k K = g h K = g K \Rightarrow g \in K$ Widerspruch!
|
|
\end{bew}
|
|
|
|
\begin{definition}
|
|
Eine transitive $G$-Menge X heißt primitiv $\Leftrightarrow \forall x \in X: \Stab_G(x)$ maximale Untergruppe von $G$ ist.
|
|
\end{definition}
|
|
|
|
\begin{diagram}
|
|
\text{2-transitiv} & \Rightarrow & \text{"`primitiv"'} & \Rightarrow & \text{transitiv} \\
|
|
\Downarrow & & \Updownarrow & & \Updownarrow \\
|
|
\text{Stab = max. Untergruppe} & & \text{Stab = max. Untergr.} & & \text{Stab = bel. Untergr.}
|
|
\end{diagram}
|
|
|
|
\begin{satz}
|
|
Eine transitive $G$-Menge $X$ ist primitiv $\Leftrightarrow$ wenn gilt: Sei $Y \subsetneq X, \abs{Y} \geq 2$. Dann gibt es für alle $g \in G$ Elemente $y,z \in Y$ mit $gy \in Y, gz \notin Y$.
|
|
\end{satz}
|
|
|
|
\underline{Anwendungen:}
|
|
\begin{satz} % 1.3.12
|
|
Sei $G$ endlich, $H, K \leq G$. Es gilt:
|
|
$$ \abs{H \cdot K} = \frac{\abs{H} \cdot \abs{K}}{\abs{H \cap K}} $$
|
|
\end{satz}
|
|
|
|
\begin{bew}
|
|
Sei $X = G/K$ eine $G$-Menge. Durch Einschränken ist $G/K$ auch $H$-Menge. \\
|
|
Sei $H_K$ die Bahn von $K = 1\cdot K$ unter dieser $H$-Operation. \\
|
|
Klar: $H_K = \set{hK \mid h \in H}, H K = \mathop{\cup}\limits_{h \in H} h K$. \\
|
|
Also ist $HK$ die Vereinigung von $K$-Nebenklassen von $G$ mit Vertretern aus $H$. \\
|
|
Also ist $\abs{HK} = \abs{\lsup{H}{K}} \cdot \abs{K}$. Nach 1.3.7 ist $\abs{\lsup{H}{K}} = \abs{H : \Stab_H(K)}$ \\
|
|
$\Stab_H(K) = \set{h \in H \mid hK = K} = K \cap H$. \\
|
|
Also ist $\abs{HK} = \abs{K} \cdot \abs{\lsup{H}{K}} = \abs{K} \cdot \abs{H : \Stab_H(K)} = \abs{K} \cdot \abs{H : (H \cap K)} = \abs{K} \cdot \frac{\abs{H}}{\abs{H \cap K}}$
|
|
\end{bew}
|
|
|
|
\underline{Konjugationsop:} $\abs{G} = n \in \N, 1 = g_1, g_2, \ldots, g_k$ seien Vertreter der Konjugationsklassen von $G$. \\
|
|
$\cC_i := \lsup{G}{g_i} = \set{g g_i g^{-1} \mid g \in G}$ Bahn \\
|
|
$C_i = \Stab_G(g_i) = C_G(g_i) = \set{h \in G \mid h g_i = g_i h} \leq G$ \\
|
|
|
|
\begin{satz} % 1.3.13
|
|
\underline{Klassengleichung:} Sei $\abs{G} = n$. \\
|
|
$ n = 1 + \sum_{i=2}^{k} \abs{G : C_i} = \abs{Z(G)} + \sum\limits_{i=1,\ldots,k, g_i \notin Z(G)} \abs{G : C_i} $
|
|
\end{satz}
|
|
|
|
\begin{bew}
|
|
Ohne Einschränkung: $Z(G) = \set{g_1, \ldots, g_l}, 1 \leq l \leq k \Rightarrow C_i = G \forall i = 1, \ldots, l, \cC_i = \set{g_i}$ \\
|
|
Mit 1.3.7 $\mathop{\Rightarrow}\limits_{i=1, \ldots, k} \abs{\lsup{G}{g_i}} = \abs{\cC_i} = [G:C_i] = [G:\Stab_G(g_i)]$
|
|
\end{bew}
|
|
|
|
\begin{definition}
|
|
Sei $G$ endliche Gruppe, $G^1 = [G, G]$. Definiere $D^{i}(G) (i \in \N)$ durch
|
|
\begin{enumerate}
|
|
\item $D^1(G) = G^1$
|
|
\item $i > 1: D^i(G) = [D^{i-1}(G), D^{i-1}(G)]$
|
|
\end{enumerate}
|
|
Klar: $D^i(G) \trianglelefteq D^{i-1}(G)$ und $D^{i-1}(G)/D^i(G)$ abelsch. \\
|
|
$G$ heißt auflösbar, falls $D^k(G) = (1)$ für ein $k \in \N \Leftrightarrow \exists (1) = N_1 \leq N_2 \ldots \leq N_m = G$ mit $N_i \trianglelefteq N_{i+1}$ und $N_{i+1}/N_i$ abelsch (zyklisch, zyklisc von Primzahlordnung nach Korrespondenzsatz). \\
|
|
Kann man zusätzlich $N_i$ so wählen, dass $N_i \trianglelefteq G$ ist, so heißt $G$ Überauflösbar ("`supersolvable"'). \\
|
|
$N \trianglelefteq G$: mit $N$ auflösbar, $G/N$ auflösbar $\Leftrightarrow G$ auflösbar.
|
|
\end{definition}
|
|
|
|
Sei $Z_i(G)$ induktiv durch folgendes definiert:
|
|
\begin{enumerate}[i)]
|
|
\item $Z_1(G) = Z(G) \trianglelefteq G$ (charakteristisch)
|
|
\item $Z_2(G)$ ist volles Urbild von $Z(G/Z(G))$ in $G$ unter natürlicher Projektion $G \rightarrow G/Z(G)$. \\
|
|
Beachte: Nach Korrespondenzsatz (1.2.10) gilt: $Z_2(G) \trianglelefteq G$. \\
|
|
($Z_2(G) = \set{g \in G \mid g Z(G) \in Z(G/Z(G)) }$)
|
|
\item $i > 1: Z_i(G)$ ist volles Urbild von $Z(G/Z_{i-1})$ in $G, Z_i(G) \trianglelefteq G$.
|
|
\end{enumerate}
|
|
Haben: $(1) = Z_1(G) \trianglelefteq Z_2(G) \trianglelefteq \ldots \trianglelefteq Z_i(G) \trianglelefteq \ldots$ \\
|
|
$Z_i(G) / Z_{i-1}(G)$ abelsch, $Z_i(G) \trianglelefteq G$. (Beweis: Übung) \\
|
|
$G$ heißt nilpotent, falls $\exists k \in \N: Z_k(G) = G$. \\
|
|
\underline{Beachte:} nilpotent $\Rightarrow$ überauflösbar $\Rightarrow$ auflösbar
|
|
|
|
\begin{korr} % 1.3.14
|
|
Sei $G$ eine $p$-Gruppe, $p$ Primzahl (d.h. $\exists t \in \N: \abs{G} = p^t$), Dann ist $\abs{Z(G)} > 1$. \\
|
|
Insbesondere ist $G$ nilpotent.
|
|
\end{korr}
|
|
|
|
\begin{bew}
|
|
$x \in G, x \notin Z(G) \Rightarrow C_G(x) \lneq G \Rightarrow [G : C_G(x)]$ wird von p geteilt. \\
|
|
Klassengleichung: $\abs{G} = p^t = \abs{Z(G)} + \sum\limits_{i=l+1}^k \abs{G : C_G(g_i)}$ \\
|
|
$p$ teilt $\abs{G : C_G(g_i)} \Rightarrow p $ teilt die Summe $\Rightarrow p $ teilt $ \abs{Z(G)}$. \\
|
|
Rest: Übung.
|
|
\end{bew}
|
|
|
|
\begin{bem}
|
|
Berühmte Ergebnisse:
|
|
\begin{enumerate}[I)]
|
|
\item Brunside's $pq$-Theorem: Seien $p, q$ Primzahlen, $\abs{G} = p^a \cdot q^b, a, b \in \N \Rightarrow G$ ist auflösbar.
|
|
\item Feit-Thompson: Ist $2 \nmid \abs{G} \Rightarrow G$ ist auflösbar.
|
|
\end{enumerate}
|
|
\end{bem}
|
|
|
|
\underline{Beachte:} Sei $H \leq G$. Dann ist $H \trianglelefteq G \Leftrightarrow H$ ist Vereinigung von (disjunkten) Konjugationsklassen von $G$; denn
|
|
$gHg^{-1} = H \forall g \in G$ gilt genau dann, wenn $\forall h \in H, g \in G: c_g(h) = ghg^{-1} \in H$, d.h. $\lsup{G}{h} \subseteq H$. Daher ist
|
|
$\abs{H} = \sum\limits_{g_i \in H} \abs{C_i} $ % i ) 1, \ldots, k
|
|
|
|
\underline{Erinnerung:} Sei $H \leq G$. Dann ist $N_g(H) = \set{g \in G \mid gHg^{-1} = H} \leq G$ und $H \trianglelefteq N_G(H) = $ die eindeutig bestimmte größte Untergruppe von $N$,
|
|
in der $H$ normal ist. $H \trianglelefteq G \Leftrightarrow N_G(H) = G$.
|
|
|
|
\begin{satz} % 1.3.15
|
|
Sei $\abs{G} = n < \infty$, und sei $H \leq G$. Sei $\mathcal{A} = \set{gHg^{-1} \mid g \in G}$. Dann ist $\abs{\mathcal{A}} = \abs{G : N_G(H)}$.
|
|
\end{satz}
|
|
|
|
\begin{bew}
|
|
$G$ operiert auf $\sigma(G)$ ($\set{K \leq G}$) per Konjugation, und $\mathcal{A}$ ist gerade die Bahn $\lsup{G}{H}$ von $H$ unter dieser Operation.
|
|
$N_G(H) = \Stab_G(H)$. So folgt die Behauptung aus 1.3.7.
|
|
\end{bew}
|
|
|
|
\begin{definition}
|
|
$H, K \leq G, z \in G$. Dann heißt $HzK = \set{hzk \mid h \in H, k \in K}$ die $H$-$K$-Doppelnebenklasse von $z$. \\
|
|
Definiere $\sim$ auf $G$ durch $, y \in G$, so ist $x \sim y \Leftrightarrow \exists h \in H, k \in K: y = hxk$
|
|
\begin{enumerate}[i)]
|
|
\item $ x = 1_H x 1_K \Rightarrow x \sim x \forall x \in G$
|
|
\item $ y = hxk \Rightarrow x = h^{-1}yk^{-1} \Rightarrow$ Symmetrie
|
|
\item $ y = h_1 x k_1, z = h_2 y k_2 \Rightarrow z = h_2 h_1 x k_1 k_2 \Rightarrow x \sim z$
|
|
\end{enumerate}
|
|
Also ist $G$ disjunkte Vereinigung der $H$-$K$-Doppelnebenklassen.
|
|
\end{definition}
|
|
|
|
\underline{Klar:} $HzK = \bigcup\limits_{h \in H} hzK = \bigcup\limits_{k \in K} Hzk$ ist (disjunkte) Vereinigung von $K$-Links- bzw $H$-Rechtsnebenklassen in $G$.
|
|
|
|
\begin{satz} % 1.3.16
|
|
Sei $\abs{G} = n < \infty, H, K \leq G$ und $ \in G$. Dann gilt: \\
|
|
$$ \abs{HzK} = \frac{\abs{H} \cdot \abs{K}}{\abs{H \cap zKz^{-1}}} = \frac{\abs{H} \cdot \abs{K}}{\abs{z^{-1}Hz \cap K}} = [H : (H \cap zKz^{-1}] \cdot \abs{K} = \abs{H} \cdot [K : (z^{-1}Hz \cap K] $$
|
|
Das kommt nicht von unefähr: Ist $h_1 = 1, h2, \ldots,h_l \in H$ ein Vertretersystem der Linksnebenklassen von $H \cap zKz^{-1}$ in $H$, d.h. $H = \mathop{\cup}\limits^{\bullet} h_i (H \cap zKz^{-1}$,
|
|
so ist $HzK = \bigcup\limits_{j=1, \ldots, l}^{\bullet} h_i z K$. Analog $K = \bigcup\limits_{j=1, \ldots, m}^{\bullet} (z^{-1}Hz \cap K) \cdot k_j, HzK = \bigcup\limits_{j=1, \ldots, m}^{\bullet} Hz k_j $
|
|
\end{satz}
|
|
|
|
\underline{Beweisidee:} $h \in H \cap zKz^{-1} \Leftrightarrow \exists k \in K: h = zkz^{-1} \Leftrightarrow hzK = zkz^{-1}z K = zkK = zK \Rightarrow h_i (z^{-1}H \cap K) zK= h_i zK$, Details Übung.
|
|
|
|
\begin{bew}
|
|
\begin{enumerate}[a)]
|
|
\item $\abs{HzK} = \abs{HzKz^{-1}} \mathop{=}\limits^{\text{1.3.12}} \frac{\abs{H} \cdot \abs{zKz^{-1}}}{\abs{H \cap zKz^{-1}}} = \frac{\abs{H} \cdot \abs{K}}{\abs{H \cap zKz^{-1}}} = \frac{\abs{H} \cdot \abs{K}}{\abs{z^{-1}Hz \cap K}}$
|
|
\item 2. Beweis: $G$ operiert auf $G / K$ wie üblich, also auch $H$ durch Einschränkung. $HzK$ ist die Vereinigung der Nebenklassen, die in $\lsup{H}{zK}$ liegen. Daher ist $\abs{HzK} = \abs{K} \cdot $ Bahnlänge $\abs{\lsup{H}{zK}}$. Nun ist $\Stab_H(zK) = \set{h \in H \mid hzK = zK}$. Aber $hzK = zK \Leftrightarrow z^{-1}hz = k \in K \Leftrightarrow h = zkz^{-1}$ ist $\exists k \in K$. \\
|
|
Also ist $\Stab_H(zK) = H \cap zKz^{-1} \mathop{\Rightarrow}\limits^{\text{1.3.7}} \abs{HzK} = \abs{K} [H : H \cap zKz^{-1}] = \frac{\abs{H}\cdot \abs{K}}{\abs{H \cap zKz^{-1}}}$
|
|
\end{enumerate}
|
|
\end{bew}
|
|
|
|
% \part{Lineare Gruppen}
|
|
|
|
$F$ ist ein Körper, $n \in \N, G = \GL_n(F) \cong \Aut_F(V), v = F$-Vektorraum mit $\dim_F(V) = n$ \\
|
|
$G = \set{A \in F^{n \times n} \mid \det A \neq 0} = $ volle lineare Gruppe. \\
|
|
$SL_n(F) = \set{A \in F^{n \times n} \mid \det A = 1} = $ spezielle lineare Gruppe. \\
|
|
$Z(G) = \set{\alpha \cdot E_{n \times n} | 0 \neq \alpha \in F}$ \\
|
|
$Z(\SL_n(F)) = Z(G) \cap \SL_n(G)$, da $G = \SL_n(F) \cdot \set{\pmatr{\alpha & & & 0 \\ & 1 & & \\ & & \ddots & \\ 0 & & & 1}}$ \\
|
|
$ Z(\SL_n(F)) = \set{ \alpha \cdot 1_G \mid 0 \neq \alpha \in F, \alpha^n = 1}$ \\
|
|
$\PSL_n(F) = \SL_n(F) / Z(\SL_n(F)) = $ "`projektive spezielle lineare Gruppe"' \\
|
|
\underline{Ziel:} $\Gamma = \PSL_n(F), \Gamma \neq \PSL_n(\GF(q))$ für $n = 2, q = 2, 3$ und $n = 3, q = 2$, dann ist $\PSL_n(F)$ einfach.
|
|
|
|
\underline{Notation:} $\abs{F} = \GF(q) = \F_q$ Körper mit $q$ Elementen, $q = p^a, p$ Primzahl, $a \in N$. \\
|
|
$G = \GL_n(q), \SL_n(F) = \SL_n(q), \PSL_n(F) = \PSL_n(q)$ \\
|
|
$\abs{G} = \prod\limits_{k=1}^{n} (q^n - q^{k-1}) = (q^n-1)(q^n-q)(q^n-q^2)\ldots = q^{\frac{n(n-)}{2}} (q^n-1)(q^{n-1}-1)\ldots(q-1)$
|
|
$\abs{\SL_n(q)} = \frac{\abs{\GL_n(q)}}{q-1}, \abs{\PSL_n(q)} = \frac{\abs{\SL_n(q)}}{\abs{ \alpha \mid \alpha^n = 1 \in F}} $
|
|
|
|
\chapter{Basics und Bruhat-Zerlegung}
|
|
|
|
\begin{satz} % 2.1.1
|
|
$\abs{\GL_n(q)} = $ oben (Algebra)
|
|
\end{satz}
|
|
|
|
\begin{definition}
|
|
$T := \set{ \text{Diagonalmatrizen in } G = diag(\alpha_1, \ldots, \alpha_n) \mid 0 \neq \alpha_i \in \F_q}, \abs{T} = (q-1)^n$, Standard (Split) "`Torus"' \\
|
|
$B := \set{ A = \text{obere Dreiecksmatrizen in } G \mid \det A = \prod \alpha_i \neq 0}$, Standard "`Boreluntergruppe"' von $G$ \\
|
|
Klar: $T \leq B \leq G$ "`Borus"', "`Torel"'; $A \in B \Rightarrow A^{-1} \in B; X, Y \in B \Rightarrow XY \in B$, also $B \leq G$. \\
|
|
$U = \set{ A \in B \mid \text{Diagonaleinträge von $A$ sind 1}} \leq B$ \\
|
|
$A \in B, X \in U: AXA^{-1} \in U \Rightarrow U \trianglelefteq B$
|
|
\end{definition}
|
|
|
|
\underline{Klar:} $U \cap T = (1_G)$. \\
|
|
Sei $A = \in B \Rightarrow A \cdot \pmatr{A_{11}^{-1} & & 0 \\ & \ddots & \\ & & A_{nn}^{-1}} \in U$ \\
|
|
d.h. $Y \in T, A \cdot Y = X \Rightarrow A = X \cdot Y^{-1}$. Also ist $B = U \cdot T$.
|
|
|
|
\begin{definition}
|
|
\begin{enumerate}[i)]
|
|
\item Eine Untergruppe von $G$, die konjugiert zu $B$ ist, heißt Boreluntergruppe von $G$.
|
|
\item Sei $\xi = (e_1, \ldots, e_n)$ natürliche Basis von $\F_q^n$, Für $\pi \in \sigma_n$ sei $\xi_{\pi} = (e_{\pi(1)}, \ldots, e_{\pi(n)})$. \\
|
|
Sei $E_{\pi} = m_{\id}(\xi, \xi_\pi) $ Basiswechselmatrix von $\xi$ nach $\xi_\pi$ \\
|
|
Beispiel: $\pi = (2,3,1): E_\pi = \pmatr{0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0} = $ Permutationsmatrix zu $\pi$. \\
|
|
Beachte: Matrix-Einheit: $e_{ij} = (\delta_{r s}) \in M_{n \times n}(\F_q) $ \\
|
|
$E_\pi = \sum\limits_{i=1}^n e_{\pi(i)i}$
|
|
\end{enumerate}
|
|
\end{definition}
|
|
|
|
\begin{definition}
|
|
Eine Permutationsmatrix $A \in M_{n \times n}(F)$ ist eine Matrix, die in jeder Spalte und Zeile genauen einen von 0 verschiedenen Eintrag hat, der 1 ist. \\
|
|
Sei $A$ Permutationsmatrix. Definiere $\pi: \set{1, \ldots, n} \rightarrow \set{1, \ldots, n}$ durch $\pi(i) = j \Leftrightarrow A_{\pi(i)j} = 1$.
|
|
\end{definition}
|
|
|
|
Also ist $\pi \mapsto E_\pi$ eine Bijektion von $\sigma_n$ in $W := \set{\text{Permutationsmatrizen}}$.
|
|
|
|
Seien $\sigma, \pi \in \sigma_n$. Dann ist $E_\pi \cdot E_\sigma = (\sum_{i=1}^n e_{\pi(i)i}) (\sum_{j=1}^n e_{\sigma(j)j}) = \sigma_{i,j} e_{\pi(i)i} e_{\sigma(j)j}
|
|
= \sum_{j=1}^{n} e_{\pi\sigma(j)j} = E_{\pi \sigma}$. \\
|
|
Also ist $\pi \mapsto E_\pi$ ein Isomorphismus von $\sigma_n$ in $W$, insbesondere ist $W \leq G$, $W$ heißt "`Weylgruppe"' von $G$.
|
|
|
|
\begin{satz} % 2.1.2 + 2.1.3
|
|
Die Menge $W$ der Permutationsmatrizen in $G = \GL_n(F)$ ist Untergruppe von $G$ und isomorph zu $\sigma_n$. \\
|
|
\underline{Beachte:} Sei $\pi \in W \Rightarrow \det \pi = \sign \pi \in \set{-1, +1}$
|
|
\end{satz}
|
|
|
|
\begin{bem}
|
|
Ist $E_\pi$ Permutationsmatrix zu $\pi \in \sigma_n, M \in F^{n \times n}$, so entsteht $\pi \cdot M = E_\pi M$ aus $M$ durch entsprechende Zeilenpermutationen und $M \pi$ durch
|
|
entsprechende Spaltenpermutationen. \\
|
|
$\sigma_n$ operiert auf der natürlichen Basis $\xi \rightsquigarrow \xi_\pi = (e_{\pi(1)}, \ldots, e_{\pi(n)})$.
|
|
\end{bem}
|
|
|
|
\begin{definition}
|
|
Sei $1 \leq i,j \leq n, i \neq j$, und sei $\alpha \in F$. Dan sei $x_{ij}(\alpha) \in F^{n \times n}$ die entsprechende Elementarmatrix $A = (\alpha_{st})$ mit
|
|
$\alpha_{st} = \left\{\matr{1 & \text{für } s = t \\ \alpha & \text{für } s = i, t = j \\ 0 & \text{sonst}}\right.$ \\
|
|
$x_{ij}(\alpha) = \pmatr{1 & & \alpha \\ & \ddots & \\ & & 1}, \alpha$ an Position $i,j$ \\
|
|
Die Matrizen $x_{ij}(\alpha)$ und ihre $G$-konjugierten heißen Transvektionen. \\
|
|
\underline{Beachte:} $x_{ij}(\alpha) \cdot M$ entsteht aus $M$ durch Addition von Reihe (Saplte) $j$ mal $\alpha$ zu Zeile (Spalte) $i$ ($M \cdot x_{ij}(\alpha)$.
|
|
\end{definition}
|
|
|
|
\begin{lemma} % 2.1.4
|
|
Seien $\alpha, \beta \in F, i \neq j, \pi in W$
|
|
\begin{enumerate}[i)]
|
|
\item $\det(x_{ij}(\alpha)) = 1$, also ist $x_{ij}(\alpha) \in \Omega_n(F) \leq \GL_n(F)$.
|
|
\item Ist $\alpha \neq 0$, so ist $x_{ij}(\alpha) \in B \Leftrightarrow i < j$. ($U \leq B$)
|
|
\item $x_{ij}(\alpha) x_{ij}(\beta) = x_{ij}(\alpha + \beta), x_{ij}(\alpha)^{-1} = x_{ij}(-\alpha)$.
|
|
So ist $X_{ij} = \set{x_{ij}(\alpha) \mid \alpha \in F} \leq G$ die sogenannte Wurzeluntergruppe zur Wurzel $(j-i)$; $X_{ij} \cong (F, +)$
|
|
\item Sind $i, j, k \in \set{1, \ldots, n}$ paarweise verschieden, so ist $[x_{ij}(\alpha), x_{jk}(\beta) ] = x_{ik}(\alpha \beta)$
|
|
\item Ist $\pi \in \sigma_n$, so ist $\pi x_{ij}(\alpha) \pi^{-1} = x_{\pi(i)\pi(j)}(\alpha)$
|
|
\item Bemerkung von oben.
|
|
\end{enumerate}
|
|
\end{lemma}
|
|
|
|
\begin{bew}
|
|
\begin{enumerate}
|
|
\item[i),ii)] trivial.
|
|
\item[iii)] Beachte: $x_{ij}(\alpha) = E + \alpha e_{ij}$ \\
|
|
$(E + \alpha e_{ij})(E + \beta e_{ij}) = E + (\alpha + \beta) e_{ij} + \alpha \beta e_{ij} e_{ij} = E + (\alpha + \beta) e_{ij} = x_{ij}(\alpha + \beta)$. \\
|
|
$\Rightarrow x_{ij}(\alpha) \cdot x_{ij}(-\alpha) = x_{ij}(0) = E = 1 \Rightarrow x_{ij}(\alpha)^{-1} = x_{ij}(-\alpha)$
|
|
\item[iv)] $[x_{ij}(\alpha), x_{jk}(\beta)] = (E + \alpha e_{ij})(E + \beta e_{jk})(E - \alpha e_{ij})(E - \beta e_{jk}) $ \\
|
|
$ = (E + \alpha e_{ij} + \beta e_{jk} + \alpha \beta e_{ik}) \cdot (E - \alpha e_{ij} - \beta e_{jk} + \alpha \beta e_{ik}) $ \\
|
|
$ = E - \alpha e_{ij} - \beta e_{jk} + \alpha \beta e_{ik} + \alpha e_{ij} - 0 - \alpha \beta e_{ik} + 0 + \beta e_{jk} - 0 + 0 + \alpha \beta e_{ik} - 0 - 0 + 0 $ \\
|
|
$ = E + \alpha \beta e_{ik} = x_{ik}(\alpha \cdot \beta) $
|
|
\item[v)] Beachte: $\pi e_{ij} = e_{\pi(i)j}$ wegen vi). $e_{ij} \pi^{-1} = e_{i\pi(j)}$; denn $E_\pi = \sum\limits_{s=1}^n e_{\pi(s)s}$ \\
|
|
$ \Rightarrow E_\pi e_{ij} = \sum\limits_{s=1}^n e_{\pi(s)s} e_{ij} = e_{\pi(s)j}, e_{ij} E_{\pi^{-1}} = \sum e_{ij} e_{\pi^{-1}(s)s} = e_{i \pi(j)}$ \\
|
|
$ \Rightarrow \pi x_{ij}(\alpha) \pi^{-1} = \pi (E + \alpha e_{ij}) \pi^{-1} = \pi E \pi^{-1} + \alpha \pi e_{ij} \pi^{-1} = E + \alpha e_{\pi(i) \pi(j)} = x_{\pi(i)\pi(j)}(\alpha)$
|
|
\end{enumerate}
|
|
\end{bew}
|
|
|
|
\underline{Ziel:} $G = \bigcup\limits_{w \in W}^{\bullet} BwB$, insbesondere: es gibt $n!$ viele $B$-$B$-Doppelnebenklassen in $G$ ($U$-$B$-, $B$-$U$-). "`Bruhat-Zerlegung"'
|
|
|
|
\begin{lemma} % 2.1.5
|
|
Sei $M \in G$. Dann gibt es ein $b \in B (U)$ so, dass gilt: \\
|
|
Für $1 \leq i \leq n$ gibt es eine eindeutig bestimmte Zeile $k_i$ in $b \cdot M$ so, dass der $i$-te Eintrag in dieser Zeile der erste von 0 verschiedene Eintrag in ihr ist,\\
|
|
und $\set{k_1, \ldots, k_n} = \set{1, \ldots, n}$; $i \mapsto k_i \in \sigma_n$.
|
|
\end{lemma}
|
|
|
|
\begin{bew}
|
|
Die 1. Spalte von $M$ kann nicht die 0-Spalte sein $\Rightarrow \exists k_1$ so, dass Eintrag $k_i$ in $M = (\alpha_{rs})$ ungleich 0 aber $\alpha_{r1} = 0$ für $r > k_1$ ist. (Der letzte von 0 verschiedene Eintrag in der Spalte). \\
|
|
Durch elementare Zeilentransformationen ($x_{1,l}(\frac{-\alpha_{l,1}}{\alpha_{k_1 1}})$, $l < k_1$) aus $U$ kann man $M'$ erhalten, in der $k_i$ der einzige von 0 verschiedene Eintrag in der 1. Spalte ist. \\
|
|
Streiche 1. Spalte und $k_1$-te Zeile und arbeite induktiv weiter.
|
|
\end{bew}
|
|
|
|
\begin{satz} % 2.1.6
|
|
$G = BWB = \bigcup\limits_{w \in W} BwB$ (bzw. $UwB$ oder $BwU$).
|
|
\end{satz}
|
|
|
|
\begin{bew}
|
|
$M \in G, b \in B, k_i$ wie in 2.1.5 gewählt. Die Abbildung $i \mapsto k_i$ ist Permutation $\pi = \pi_M \in \sigma_n$. \\
|
|
Sei $w = \pi^{-1}$. Dann ist $ wbM = \tilde{b} \in B \Rightarrow M = b^{-1} \pi \tilde{b} \in B \pi B$. \\
|
|
\underline{Beachte:} 2.1.5 konstruiert $\pi_M$ für $M$.
|
|
\end{bew}
|
|
|
|
\begin{lemma} % 2.1.7
|
|
Seien $w_1, w_2 \in W$ und $b \in B$, so dass $w_1 b w_2 \in B$ ist, dann ist $w_1^{-1} = w_2$.
|
|
\end{lemma}
|
|
|
|
\begin{bew}
|
|
Sei $1 \leq j \leq n$ beliebig und sei $i = w_1^{-1}(j)$, also $w_1(i) = j$. \\
|
|
Sei wieder $E = (e_1, \ldots, e_n)$ natürliche Basis von $F^n$,so ist $_1^{-1}(e_j) = e_i$. \\
|
|
Dann ist Zeile $j$ von $w_1 b$ gleich Zeile $i$ von $b$. \\
|
|
Sei $k = w_2^{-1}(i)$, d.h. $w_2(k) = i$, dann ist Spalte $k$ von $w_1 b w_2$ gleich Spalte $i$ von $w_1 b$. \\
|
|
Es sei $\beta = (b)_{ii} \in F$.
|
|
$\beta \neq 0$ ($b \in B$); $\beta$ ist auch $(w_1 b)_{ji}$ und $(w_1 b w_2)_{jk}$ (und immer noch $\neq 0$) \\
|
|
$\Rightarrow j \leq k$, da $w_1 b w_2 \in B$ \\
|
|
Wir haben $w_2^{-1}w_1^{-1}(j) = w_2^{-1}(i) = k \geq j \Rightarrow w_2^{-1} w_1^{-1} = 1 \Rightarrow w_1 = w_2^{-1}$
|
|
\end{bew}
|
|
|
|
\begin{korr} % 2.1.8
|
|
Seien $w, w' \in W, w \neq w'$. Dann ist $BwB \cup Bw'B = \emptyset$, und daher $G = \bigcup\limits_{\pi \in W}^{\bullet} B \pi B$.
|
|
\end{korr}
|
|
|
|
\begin{bew}
|
|
Sei $BwB \cap Bw'B \neq \emptyset \Rightarrow BwB = Bw'B \Rightarrow \exists b, b': w' = b w b' $ \\
|
|
$ \Rightarrow w^{-1} b^{-1} w' = b' \in B \Rightarrow w^{-1} = (w')^{-1} \Rightarrow w = w'$
|
|
\end{bew}
|
|
|
|
\begin{bem} % 2.1.9
|
|
In 2.1.5 wird das eindeutig bestimmte $w \in W$ für $M \in G$ konstruiert so, dass $M \in BwB$ ist.
|
|
\end{bem}
|
|
|
|
\begin{lemma} % 2.1.10
|
|
Sei $b \in B$. Dann gibt es ein Produkt $t$ von Transvektionen so, dass $t \cdot b$ Diagonalmatrix ist, die dieselben Diagonaleinträge wie $b$ hat. \\
|
|
Beweis klar.
|
|
\end{lemma}
|
|
|
|
\begin{satz} % 2.1.11
|
|
$G$ wird von $T \leq G$ und der Menge der Transvektionen erzeugt.
|
|
\end{satz}
|
|
|
|
\begin{bew}
|
|
Sei $H$ die Untergruppe von $G$, die von diesen Matrizen erzeugt wird. \\
|
|
Zu zeigen: $ H = G $ \\
|
|
Wegen 2.1.10 ist $B \leq H$, und daher genügt es wegen der Bruhat-Zerlegung 2.1.8 zu zeigen, dass $w \in H \forall w \in W$. \\
|
|
Dafür genügt es zu zeigen: $\tau_{i,j} \in \sigma_n$ ist in $H$ enthalten: \\
|
|
$E_{\tau_{i,j}} = \sum\limits_{s\neq i, s\neq j} e_ss + e_ij + e_ji = x_{ji}(1)x_{ij}(-1)x_{ji}(1) \cdot D, D$ Diagonalmatrix. \\
|
|
$w = x_{ji}(1)x_{ij}(-1)x_{ji}(1), w e_k = \left\{\matr{e_n & \text{für } k \neq i, k \neq j \\ e_j & \text{für } k = i \\ - e_i & \text{für } k = j}\right.$
|
|
\end{bew}
|
|
|
|
Missing: 17.11.2009
|
|
|
|
$P_f = U_f \rtimes L_f$
|
|
|
|
\underline{Beispiele:} $V = F^n, \xi = (e_i, \ldots, e_n), V_i = < e_i, \ldots, e_{n_i} >, 0 < n_1 < \ldots < n_k = n f = (V_1, \ldots, v_n) $ \\
|
|
\underline{Beachte:} $V_i = V_{i-1} \oplus y_i, y_i := < e_{n_i+1}, \ldots, e_{n_i} > $ \\
|
|
$ v_i = n_i, v_2 = n_2 - n_1, v_3 = n_3 - n_2, \ldots, v_k = n_k - n_{k-1}, v_i = \dim_F(y_i) $ \\
|
|
$L_f = \set{\text{Matrix mit von 0 verschiedenen Blöcken der Größen }v_i \times v_i\text{ auf der Diagonale aus } G}$ \\
|
|
...
|
|
|
|
$ v = (v_1, \ldots, v_k) \vDash n $ Wir schreiben $P_v = U_v \rtimes L_v$ anstatt $P_f, L_f, U_f$. ($\nu = (n) \Rightarrow P_{(n)} = G = L_{(n)}, U_{(n)} = (1)$) \\
|
|
\underline{Sonderfall:} $v = (1^n) = (1, \ldots, 1) \vDash n, P_v = B = u \cdot T$, Borus.
|
|
|
|
\begin{definition}
|
|
Eine $n \times m$-Matrix $A$ heißt (untere) \underline{unitriangulär}, falls folgendes gilt: $A_{ii} = 1, A_{ij} = 0 \forall i < j$ (allgemeine untere Dreiecksmatrix mit 1 auf der Diagonale), analog obere.
|
|
\end{definition}
|
|
|
|
\begin{lemma} % 2.2.5
|
|
Sei $V = F^n, f = (W_1, \ldots, W_n)$ mit $W_i = < e_1, \ldots, e_i >, \xi = (e_1, \ldots, e_n)$ natürliche Basis von $V$. \\
|
|
Sei $X$ ein $B$-invarianter Unterraum von $V$, d.h. $bx \in X \forall b \in B, x \in X (\Rightarrow bX = X$. \\
|
|
Dann ist $W = W_i$ für ein $1 \leq i \leq n$.
|
|
\end{lemma}
|
|
|
|
\begin{bew}
|
|
Sei $1 \leq k \leq n$ minimal mit $X \subseteq W_k$. Wir zeigen: $X = W_k$. \\
|
|
Dann existiert ein $x = \sum\limits_{i=1}^k \alpha_i e_i$ mit $\alpha_k \neq 0$ (da $k$ minimal). \\
|
|
... $ \exists b \in B: b \cdot x = e_k \Rightarrow e_k \in X$ \\
|
|
Nun ist $(E + e_{k-1,k}) e_k = e_k + e_{k-1} \in X \Rightarrow e_{k-1} \in X$, analog $\forall i \leq k: e_i \in X \Rightarrow W_k \subseteq X \Rightarrow W_k = X$.
|
|
\end{bew}
|
|
|
|
\begin{satz} % 2.2.6
|
|
Sei $B \leq H \leq G$. Dann is $H$ eine Standardparabolische Untergruppe, d.h. $ \exists \nu \vDash n, H = P_{\nu} $
|
|
\end{satz}
|
|
|
|
\begin{bew}
|
|
Sei $X$ ein $H$-invarianter Unterraum von $V$. Dann ist $X$ auch $B$-invariant, wil $B \subseteq H$.
|
|
Also gibt es ein $1 \leq i \leq n: X = W_i = < e_1, \ldots e_i >, \xi = (e_1, \ldots e_n)$ natürliche Basis wegen 2.2.5. \\
|
|
Seien $W_{\alpha_1}, \ldots, W_{\alpha_r}$ mit $1 \leq \alpha_1 < \alpha_2 < \ldots < \alpha_r = n$ genau die $H$-invarianten
|
|
Unterräume von $V$. $\underline{\alpha} = (\alpha_1, \ldots, \alpha_r), W_{\alpha_i} = < e_1, \ldots, e_{\alpha_i} > $
|
|
$ F_{\underline{\alpha}} = (W_{\alpha_1}, \ldots, W_{\alpha_r})$ ist $H$-invariante Fahne von Dimensionstyp $\underline{\alpha}$. \\
|
|
Sei $\mu_1 = \alpha_1,_2 = \alpha_2 - \alpha_1, \ldots, \mu_r = \alpha_r - \alpha_{r-1}$
|
|
$ \Rightarrow \mu = (\mu_1, \ldots, \mu_r) \vDash n $. \\
|
|
$\Stab_G(F_{\underline{\alpha}}) = P_{\mu}, H \leq P_\mu$ \\
|
|
Zu zeigen: $H = P_{\mu}$. \\
|
|
\underline{Spezialfälle}
|
|
\begin{enumerate}[1.)]
|
|
\item $r = 1, \mu = (n), P_{\mu} = G$ \\
|
|
Zu zeigen: $H = G$ \\
|
|
$ < H e_1 > = H$-invarianter Unterraum $\Rightarrow V = < H e_1 >$
|
|
$ \Rightarrow \exists h \in H: he_1 = \alpha_1 e_1 + \ldots + \alpha_n e_n$ mit $\alpha_n \neq 0$ \\
|
|
Bruhat-Zerlegung: $h \in B w B, \exists w \in W $ \\
|
|
2.1.9 und 2.1.5 $\Rightarrow$ Für $g \in BwB$ hat $g$ als Matrix die Form ... \\
|
|
d.h. hier für $h \in BwB: w(1) = n$ \\
|
|
Beachte: Wegen $B \subseteq H$ ist $h = b_1 w b_2 \Rightarrow w = b_1^{-1} h b_2^{-1} \in H$ \\
|
|
Sei $1 < j \leq n$ mit $w(j) = 1$ (Ohne Einschränkung $n \geq 2$) \\
|
|
Dann ist $X_{1j} = \set{x_{1j}(\alpha) | \alpha in F} \leq B \leq H$ \\
|
|
$X_{n1} = X_{w(1)w(j)} = wX_{1j}w^{-1} \in H$ (mit 2.1.4) \\
|
|
Sei $1 \leq i < m < n \Rightarrow X_{im} \subseteq B \subseteq H $ \\
|
|
Dann ist $X_{nm}(\alpha) = [x_{n1} (\alpha), x_{1m}(1) ] \in H \forall \alpha \in F$ (mit 2.1.4) \\
|
|
$ \Rightarrow X_{nm} \subseteq H$ \\
|
|
$ \forall 1 \leq < n: x_{i1}(\alpha) = [x_{in}(\alpha, x_{n1}(1)] \in H \Rightarrow X_{i1} \subseteq H$ \\
|
|
$ \forall 1 < i,m \leq n, i \neq m: x_{im}(\alpha) = [ x_{i1}(\alpha), x_{1m}(1) ] \in H \Rightarrow X_{im} \subseteq H$ \\
|
|
Wir haben gezeigt $X_{ij} \subseteq H \forall 1 \leq i, j \leq n, i \neq j$ \\
|
|
Da $T \subseteq B \subseteq H \Rightarrow H = G$.
|
|
\item $r = 2, I_{\underline{\alpha}} = W_m \lneq V = W_n$ \\
|
|
Wir wissen schon: $H \leq P_{\mu}, \mu = (m, n - m) \vDash n$ \\
|
|
Klar: $U_\mu \subseteq B \subseteq H, P_\mu = U_\mu \rtimes L_\mu$, es genügt also zu zeigen: $L_\mu \subseteq H$. \\
|
|
$L \cong \GL_m(F) \times \GL_{n-}(F)$ \\
|
|
$\GL_m(F) = < \text{Diagonalmatrizen in } \GL_m(F) \text{ und } x_{ij}(\alpha) >$, analog $\GL_{n-m}$ \\
|
|
Es genügt also zu zeigen: $X_{ij} \in H \forall 1 \leq i, j \leq m, i $ und $m + 1 \leq i, j \leq n$ \\
|
|
Sei $X_1 = < H e_1 > = H$-invarianter Unterraum von $W_m \Rightarrow X_1 = W_m$ \\
|
|
D.h $\exists h \in H, h e_1 = \alpha e_1 + \ldots \alpha_m e_m$ mit $\alpha_m \neq 0$. \\
|
|
Sei $w \in W$ mit $h \in BWB$. Wie oben folgt aus 2.1.9 und 2.1.5 $w(1) = m$ und daher $X_{m1} \subseteq H$. \\
|
|
Beachte: $w \in H \Rightarrow w^{-1}(1) = j \leq m$ \\
|
|
$X_{m1} = X_{w(1)w(j)} = w X_{1j} w^{-1} \in H$. \\
|
|
Kommutatoren wie im ersten Spezialfall $\Rightarrow X_{ij} \subseteq H \forall 1 \leq i, j \leq m \Rightarrow \GL_m(F) \subseteq H$. \\
|
|
$<H e{m+1} >$ ebenfalls $H$-invariant $\Rightarrow \exists h \in H: h e_{m+1} = \alpha_{m+1} e_{m+1} + \ldots + \alpha_n e_n$ mit $\alpha_n \neq 0$. \\
|
|
Es folgt analog wie eben $X_{ij} \subseteq H \forall m+1 \leq i, j \leq n \Rightarrow \GL_{n-m}(F) \subseteq H$. \\
|
|
$ \Rightarrow P_\mu \subseteq H \Rightarrow H = P_\mu$
|
|
\end{enumerate}
|
|
Übung: Allgemeiner Fall.
|
|
\end{bew}
|
|
|
|
\chapter{Die spezielle und projektive lineare Gruppen} % 2.3
|
|
|
|
\underline{Ziel:} $\PSL_n(F)$ ist einfach, falls $n > 2$ oder $n = 2$ und $F \neq \GF(2)$ oder $\GF(3)$ ist.
|
|
|
|
2.3.1 Erinnerung: $\det : \GL_n(F) -> F^\ast: g \mapsto \det g$ ist Gruppenhomomorphismus mit Kern $\SL_n(F) \trianglelefteq G, \SL_n(f) = \set{g \in \GL_n(F) \mid \det g = 1}$. \\
|
|
\underline{Klar:} $\det$ ist surjektiv \\
|
|
Isosätze: $q - 1 = \frac{\abs{\GL_n(q)}}{\abs{\SL_n(q)}} \Rightarrow \abs{SL_n(q)} = \prod\limits_{k=1}^n \frac{q^k - q^{k-1}}{q-1} = \prod\limits_{k=1}^{n-1} \frac{q^k+1-q^k)
|
|
= q^{\frac{n(n+1)}{2}} (q^n-1)(q^{n-1}-1})\ldots(q^2-1)$ \\
|
|
|
|
2.3.2 Satz: $\SL_n(F)$ wird von den Wurzeluntergruppen (d.h. von den Transvektionen) in $G$ erzeugt. \\
|
|
Beweis: Für $1 \leq i, j \leq n, i \neq j$, und f+r $\alpha \in F$ ist $x_{ij}(\alpha) \in \SL_n(F)$ nach 2.1.4. \\
|
|
In 2.1.5 haben wir gezeigt: Ist $g = (\alpha_{ij}) \in \SL_n(F) \subseteq G$, so gibt es ein $u \in U$ (Produkt von Transvektionen) so, dsas gilt: Für $1 \leq i \leq n$ gibt es
|
|
eine eindeutig bestimmte Zeile $k_i$ in $ug$ so, dass der $i$-te Eintrag in dieser Zeile der erste von 0 verschiedene ist. Die Abbildung $\pi:i \mapsto k_i$ ist Element von $\sigma_n = W$. \\
|
|
Wir können diese Zeilen nach 2.1.11 durch ein Produkt $\tilde{\pi}$ von Transvektionen $\tilde{(i,j)} = x_{ij} (1) x_{ji}(-1) x_{ij}(1)$ ( $(i,j) \in \sigma_n$ Transposition) bis aufs Vorzeichen ordnen.
|
|
( $\tilde{(i,j)} = diag (1, \ldots, 1, -1, 1, \ldots, 1) \cdot (i,j)$).
|
|
Daraus folgt: durch ein Produkt $b \in \SL_n(F)$ von Transvektionen wird $b \cdot g$ eine obere Dreiecksmatrix $\tilde{g}$. \\
|
|
Also $bg = \tilde{g} = \pmatr{ \lambda_1 & & A \\ & \ddots & \\ 0 & & \lambda_n}$. Beachte: $\det \tilde{g} = \det b \cdot \det g = 1$, d.h. $\tilde{g} \in \SL_n(F)$. \\
|
|
$\Rightarrow \det \tilde{g} = \lambda_1 \cdot \ldots \cdot \lambda_n = 1$.
|
|
|
|
Beachte: Seien $\alpha, \beta, \gamma \in F$ mit $\alpha \gamma \neq 0$. \\
|
|
$x_{21}(-1)x_{12}(1-\gamma^{-1})x_{21}(y) \cdot \pmatr{\alpha & \beta \\ 0 & \gamma} = \pmatr{1 & 0 \\ -1 & 1}\pmatr{1 & 1-\gamma^{-1} \\ 0 & 1}\pmatr{1 & 0 \\ \gamma & 1}\pmatr{\alpha & \beta \\ 0 & \gamma}$ \\
|
|
$ = \pmatr{1 & 1 - \gamma^{-1} \\ -1 & \gamma^{-1}} \pmatr{\alpha & \beta \\ \alpha\gamma & \gamma\beta + \gamma}
|
|
= \pmatr{\alpha + \alpha\gamma - \alpha & \beta + \gamma\beta+\gamma-\beta-1 \\ -\alpha + \alpha & -\beta + \beta + 1}
|
|
= \pmatr{\alpha\gamma & \gamma\beta-\beta-1 \\ 0 & 1}$
|
|
|
|
Auf alle Zeilen von $\tilde{g}$ anwenden.
|
|
|
|
$ \Rightarrow $ Man kann $\tilde{g}$ durch Premultiplikation mit einem Produkt von Transvektionen auf die Gestalt $\tilde{g}' = \pmatr{\lambda_1 \cdot \ldots \cdot \lambda_n & & & \ast \\ & 1 & & \\ & & \ddots & \\ 0 & & & 1} = \pmatr{1 & & \ast \\ & \ddots & \\ 0 & & 1} \in U$ bringen. Jedes Element von $U$ ist aber Produkt von Transvektionen (elementare Zeilenoperationen: $\tilde{g}' \rightsquigarrow 1$). Also ist $\tilde{g}'$ Produkt von Transvektionen. Also ist $g$ Produkt von Transvektionen.
|
|
|
|
2.3.3 Satz: Die Wurzeluntergruppen $X_{ij}, 1 \leq i, j \leq n, i \neq j,$ sind in $\SL_n(F)$ konjugiert. \\
|
|
Beweis: Seien $1 \leq i, j \leq n, 1 \leq k, l \leq n, i \neq j, k \neq l$. \\
|
|
$\sigma_n$ ist $n$-fach transitiv auf $\set{1, \ldots, n}$, also zweifach transitiv $\Rightarrow \exists w \in W = \sigma_n: w(i) = k, w(j) = l$. \\
|
|
Haben gesehen: $w X_{ij} w^{-1} = X_{w(i),w(j)} = X_{kl}$. Ist $w$ gerade Permutation, d.h. $\sign w = \det w = 1 \Rightarrow w \in \SL_n(F)$ und wir sind fertig. \\
|
|
Sei also $\sign w = \det w = -1$ und $\alpha in F$. Sei $d = d^{-1} = \pmatr{-1 & & & 0 \\ & 1 & & \\ & & \ddots & \\ 0 & & & 1} \in \GL_n(F)$. Dann ist $\det (dw) = \det d \cdot \det w = - \det w = 1$, d.h. $dw \in \SL_n(F)$. \\
|
|
$dw X_{ij} (dw)^{-1} = d (w X_{ij} w^{-1}) d = d X_{kl} d = d (E + \alpha e_{kl}) d = dEd + \alpha d e_{kl} d = \left\{\matr{X_{kl}(\alpha) & \text{für } k,l \neq 1 \\ X_{kl}(-\alpha) & \text{sonst}, (k \neq l)}\right.$ \\
|
|
In jedem Fall ist $(dw) X_{ij} (dw)^{-1} = X_{kl}$.
|
|
|
|
Definition: Sei $Z = \set{ \alpha E \mid \alpha \in F^\ast }, E = 1$. Dann ist $Z \leq G, G \subseteq Z(G) = $ Zentrum von $G$. \\
|
|
2.3.4 Satz: $Z = Z(G)$ und $Z \cap \SL_n(F) = Z(\SL_n(F))$. \\
|
|
Es genügt zu zeigen: Jedes Element von $\GL_n(F)$ (bew. $\SL_N(F)$), das mit allen Transvektionen $x_{ij}(1)$ ($1 \leq i, j \leq n, i \neq j$) vertauscht, liegt schon in $Z$. \\
|
|
Sei $g = (\alpha_{ij}) = \sum_{i,j} \alpha_{ij} e_{ij} \in Z(G) \Rightarrow g \cdot x_{rs}(1) = x_{rs}(1) \cdot g \forall 1 \leq r, s \leq n, r \neq s
|
|
\Leftrightarrow g(E+e_{rs}) = (E + e_{rs})g \Leftrightarrow \sum_{ij} \alpha_{ij} e_{ij} e_{rs} = \sum_{kl} \alpha_{kl} e_{rs} e_{kl}
|
|
\Leftrightarrow \sigma_i \alpha_{ir} e_{is} = \sum_l \alpha_{sl} e_{rl} $ \\
|
|
d.h. $e_{is} = e_{rl} \Leftrightarrow i = r, l = s, \alpha_{rr} = \alpha_{ss}, r \neq s, \alpha_{ij} = 0$ sonst. \\
|
|
$ \Rightarrow g = \alpha \cdot E \in Z$. (Für $\SL_n(F): \alpha^n = \det \alpha E = 1$)
|
|
|
|
Definition: $\GL_n(F)/Z = \PGL_n(F) =$ "`projektive allgemeine lineare Gruppe"' \\
|
|
$\SL_n(F)/Z(\SL_n(F)) = \PSL_n(F) =$ "`projektive spezielle lineare Gruppe"' \\
|
|
|
|
2. Isosatz: $\PSL_n(F) \cong \SL_n(F) /(Z \cap \SL_n(F)) = Z \cdot \SL_n(F) / Z \leq \GL_n(F)/ Z = \PGL_n(F)$ \\
|
|
Für $F = \GF(q) = \mathcal(F)_q: \abs{\PGL_n(q)} = \frac{\GL_n(q)}{Z} = \frac{\GL_n(q)}{q-1} = \abs{\SL_n(q)}$
|
|
|
|
Bemerkung:
|
|
\begin{enumerate}[1)]
|
|
\item $\GL_n(F) = \SL_n(F) \rtimes \set{\pmatr{\alpha & & & 0 \\ & 1 & & \\ & & \ddots & \\ 0 & & & 1} \mid \alpha \in F^\ast}$ \\
|
|
\item $F$ algebraisch abgeschlossen $\Rightarrow z := (\lsup{n}{\sqrt{\det g}}^{-1} E) \in Z, g \cdot z \in \SL_n(F)$, es folgt: $\PSL_n(F) \cong \PGL_n(F)$.
|
|
\item $\PSL_2(2) \cong \sigma_3 \trianglerighteq A_3$, da $\PSL_2(2) \cong GL_2(2)$ \\
|
|
$\PSL_2(3) \cong A_4 \trianglerighteq V_4 \cong G_2 \times G_2$
|
|
\end{enumerate}
|
|
|
|
2.3.6 Lemma: Sei $n \geq 2$; und $\abs{F} \neq 2, 3$ für $n = 2$. Dann ist jede Tranvektion $x_{ij}(\alpha)$ ($1 \leq i,j\leq n, i \neq j, \alpha \in F)$ ein Kommutator von Elementen in $\SL_n(f)$. \\
|
|
Beweis: Ist $ n > 2 $, dann ist $x_{ij}(\alpha) = [x_{ij}(\alpha), x_{kj}(\alpha) ]$ mit $1 \leq k \leq n, k \neq i, k \neq j$. \\
|
|
Sei $n = 2, \beta, \gamma \in F$ mit $\beta \neq 0$. \\
|
|
$[\pmatr{\beta & 0 \\ 0 & \beta^{-1}}, \pmatr{1 & \gamma \\ 0 & 1}] = \pmatr{1 & (\beta^2 -1)\gamma \\ 0 & 1}$ \\
|
|
$\Rightarrow x_{12}(\alpha) $ ist Kommutator dieser Elemente aus $\SL_2(F)$, falls es $\beta, \gamma \in F$ mit $\beta \neq 0$ gibt, so dass $\alpha = (\beta^2-1)\gamma$ ist. \\
|
|
Sei $\abs{F} > 3$, dann gibt es immer ein $\beta \in F^\ast$ mit $\beta^2 \neq 1$ und $\gamma = \alpha (\beta^2-1)^{-1}$. \\
|
|
$x_{21}(\alpha)$ ähnlich bzw. ist konjugiert in $\SL_2(F)$ zu einem Element aus $X_{12}$.
|
|
|
|
2.3.7 Korrolar: Sei $n > 2$ oder $\abs{F} > 3$ für $n = 2$. Dann ist $\SL_n(F) = [\SL_n(F), \SL_n(F)]$.
|
|
|
|
2.3.8 Lemma: Sei $n \leq 2$ $\SL_n(F)$ operiert auf der $\set{Fv | 0 \neq v \in F^n}$ durch $g (Fv) := F (gv)$ (Kern ist das Zentrum). \\
|
|
Diese Operation ist 2-fach transitiv. \\
|
|
Beweis: Seien $c_1, c_2, d_1, d_2 \in F^n\without \set{0}$ und $c_1, c_2$ bzw. $d_1, d_2$ linear unabhängig, d.h. $Fc_1 \neq Fc_2, Fd_1 \neq Fd_2$. \\
|
|
Ergänze $c_1, c_2$ bzw. $d_1, d_2$ zu Basen $\tilde{C} = (c_1, c_2, \ldots, c_n)$ und $\tilde{D} = (d_1, d_2, \ldots, d_n)$ von $F^n$. Sei $C = m_{\id}(\xi, \tilde{C}) = m_f(\xi, \xi)$ mit $f(e_i) = c_i$. \\
|
|
$D = m_{\id}(\xi, \tilde{D}) = m_g(\xi, \xi)$ mit $g(e_i) = d_i$ \\
|
|
Dann sind $C, D \in \GL_n(F)$. Sei $\epsilon = \det D / \det C = \det (DC^{-1}), A = \pmatr{\epsilon & 0 \\ 0 & 1_{n-1}}, \det A = \epsilon, B = DA^{-1}C^{-1}$, so ist $Bc_1 = \epsilon^{-1}d_1, Bc_i = d_i $ für $i > 2$ x\\
|
|
$BFc_i = FBc_i = Fd_i $ für alle $i$. Klar: $\det B = 1$, d.h. $B \in \SL_n(F)$ \qed.
|
|
|
|
Missing: 27.11.2009 \\
|
|
$ \abs{G} = p^a m, p \nmid m, \abs{G}_p = p^a, \abs{G}_{p'} = m $
|
|
|
|
$ \Syl_p(G) \equiv 1 \mod p $
|
|
Beweis: $X = \set{A \subseteq G \mid \abs{A} = \abs{G}_p = p^a }$ $G$-Menge \\
|
|
Bemerkung: $P \in \Syl_p(G) \Rightarrow P \in X$ \\
|
|
$ A \in X$ so gibt es ein $g \in G: g \cdot A \ni 1$ \\
|
|
$ \abs{X} = \pmatr{p^a \cdot m \\ p^a} = \sum_{O \in \text{$G$-Bahnen von $X$}} \abs{O} $ \\
|
|
Sei $A \in X, A \in O = $ Orbit von $X$so, dass $1 \in A$. Sei $P = \Stab_G(A) \leq G$. Dann ist $P \subseteq P \cdot A = A \Rightarrow \abs{P} \leq \abs{A} = p^a $ \\
|
|
1.3.7 $\Rightarrow \abs{O} = \abs{G:P}$. \\
|
|
Angenommen $p$ teilt nicht $\abs{G:P}$, so ist $\abs{G}_p$ Teiler von $\abs{P}$. Also ist $\abs{G}_p = \abs{P} = p^a$ und $P \in \Syl_p(G)$ und $\abs{O} = m$. \\
|
|
Sei umgekehrt $P \in \Syl_p(G)$. Dann ist die $G$-Menge $G/P = \cup g_i P$ mit $\abs{g_i P} = \abs{P} = p^a$, d.h. $G/P$ ist ein Orbit $O$ in $X$: $\abs{O} = \abs{G:P} = m$ \\
|
|
Klar: $\Stab_G(1 \cdot P) = P$ \\
|
|
Auf diese Weise erhalten wir eine Bijektion zwischen der Menge der $G$-Bahnen in $X' := \set{A \in X \mid p \nmid \abs{G \cdot A}}$ \\
|
|
Also ist $X' = $ Vereinigung aller Bahnen $O$ von $X$ mit $p \nmid \abs{O}$ \\
|
|
$X \without X' = $ Vereinigung aller Bahnen $O$ von $X$ mit $p \mid \abs{0}$ und daher $p \mid \abs{X \without X'} = \abs{X} - \abs{X'} $ \\
|
|
Also $\abs{X} \equiv \abs{X'} \mod p$ \\
|
|
Sei $r = \abs{\Syl_p(G)} = $ Anzahl der $p$-Sylow Untergruppen von $G$ = $\abs{\set{\text{Bahnen $O$ von $X$ mit $O \subseteq X'$}}}$. \\
|
|
Es gilt dann: $r \cdot m = \abs{X'} \equiv_p \abs{X} \equiv_p \pmatr{p^a m \\ p^a}$ \\
|
|
$ p \nmid m \Rightarrow r \mod p$ ist nur von $\abs{G}$ und nicht von $G$ selbst abhängig. Das heißt je zwei Gruppen $G$ und $H$ mit $\abs{G} = \abs{H}$ haben $\mod p$ dieselbe Anzahl von $p$-Sylowgruppen. \\
|
|
Sei $G = C_{p^a m}$, dann ist $r \equiv 1 \mod p$, also ist $\abs{\Syl_p(G)} \equiv 1 \mod p$ für alle $G$ mit $G = p^a m$. Insbesondere ist $r \neq 0$, d.h. $G$ besitzt mindestens eine $p$-Sylow Untergruppe. \\
|
|
Dies zeigt 1) und 4).
|
|
|
|
Sei nun $P \in \Syl_p(G), G$ Gruppe der Ordnung $p^a m, p^a = \abs{G}_p, Q \leq G $ $p$-Gruppe. \\
|
|
$Y = \set{gPg^{-1} \mid g\in G}$. $Q$ operiert auf $Y$ durch Konjugation: \\
|
|
$\lsup{x}{(yPy^{-1})} = xyP (xy)^{-1} \in Y$ für $x \in X$.
|
|
|
|
Sei $O$ ein $Q$-Orbit von $Y$, $P_1 \in O$. Dann ist $\abs{O} = \abs{Q : \Stab_Q(P_1)} = $ Potenz von p (möglicherweise $p^0$). \\
|
|
Aber $\abs{Y} = \abs{G : N_G(P)}$ Teiler von $m$ (1.3.15) $\Rightarrow p \nmid \abs{Y}$.Also muss es eine $Q$-Bahn $O$ in $Y$ geben mit $p \nmid \abs{O} \Rightarrow \exists Q$-Bahn $O$ in $Y$ mit $\abs{O} = p^0 = 1 \Rightarrow O = \set{P_1}$. Dann ist also $xP_1 x^{-1} = P_1 \forall x \in Q$. Daher ist $Q P_1 = P_1 Q$ und mit (1.1.4) ist $Q P_1 \leq G$ \\
|
|
Klar ist: $\abs{P_1} \leq \abs{Q P_1}$. Nach 1.3.12 ist $\abs{Q P_1} = \frac{\abs{Q}\abs{P_1}}{\abs{Q \cap p_1}} = \abs{P_1} \abs{Q: Q\cap P_1}$. Also ist $QP_1$ eine $p$-Untergruppe von $G$. \\
|
|
Also ist wegen $\abs{P_1} \leq \abs{QP_1}$ die Ordnung $\abs{Q \cdot P_1}$ von $QP_1$ gleich $P_1 = p^a$ und daher $\abs{Q \cap P_1} = \abs{Q} \Rightarrow Q \subseteq P_1 \in \Syl_p(G)$. Dies zeigt 3).
|
|
|
|
Seien $Q, P \in \Syl_p(G) \Rightarrow $ (nach vorigem Schritt) $\exists g \in G: Q \leq gPg^{-1}$. Wegen $\abs{Q} = \abs{P} = p^a$ ist $Q = gPg^{-1}$. \qed
|
|
|
|
2. Beweis für Existenz von $p$-Sylowuntergruppen:
|
|
|
|
Induktion über $\abs{G}$ \\
|
|
$\abs{G} = 1$ trivial \\
|
|
$p \nmid \abs{G}$ trivial \\
|
|
$\abs{G} = p^a m$ mit $p \nmid m > 1$, und sei die Behauptung beweisen für alle Gruppen $\abs{H}$ mit $\abs{H} < \abs{G}$. \\
|
|
Besitzt $G$ eie echte Untergruppe $H$ mit $p \nmid [G : H]$, so ist jede $p$-Sylowgruppe von $H$ eine $p$-Sylowgruppe von $G$ und wir sind fertig. \\
|
|
Ohne Einschränkung gelte $H \lneq G \Rightarrow p \mid [G : H]$ \\
|
|
Klassengleichung 1.3.13: \\
|
|
$\abs{G} = \abs{Z(G)} + \sum\limits_{i=1}^l [G : C_G(g_i)]$ mit $\set{g_1, \ldots, g_l}$ Repräsentanten von Konjugationsklassen von $G$ der Größe $> 1$. \\
|
|
Für $1 \leq i \leq l$ ist $C_G(g_i) \lneq G$ und daher $p \mid [G : C_G(g_i)]$ \\
|
|
Also teilt $p \mid Z(G) =$ abelsche Gruppe. Also ist $\abs{Z(G)} > 1$. \\
|
|
$\Rightarrow G$ besitzt eine normale Untergruppe $N$ ($\leq Z(G)$) der Ordnung $p$. $\abs{G/N} = p^{a-1}m < p^am \Rightarrow \exists \overline{P} \in \Syl_p(G/N)$ \\
|
|
Sei $P = $ volles Urbild von $\overline{P}$ in $G \Rightarrow N \trianglelefteq P, P/N = \overline{P} \Rightarrow \abs{P} = p^a \Rightarrow P \in \Syl_p(G)$.
|
|
|
|
Korrolar: Sei $\abs{G} = p^a m, p^a = \abs{G}_p$. Dann gibt es für $1 \leq b \leq a$ eine Untergruppe $H$ von $G$ mit $\abs{H} = p^b$ (Weil $P \in \Syl_p(G)$ eine $p$-Gruppe, daher nilpotent und damit auflösbar ist. Wir können $H \leq P$ wählen!).
|
|
|
|
3.1.3 Korrolar: $\abs{\Syl_p(G)}$ ist Teiler von $\abs{G}_{p'} = \frac{\abs{G}}{\abs{G}_p}$ ($\abs{G} = p^a m, p \nmid m$) \\
|
|
Beweis: $G$ operiert auf $\Syl_p(G)$ per Konjugation transitiv. Also ist $P \in \Syl_p(G)$, so ist $\abs{\Syl_p(G)} = [G : \Stab_G(P)]$. Wegen $P \trianglelefteq N_G(P) \leq G$ ist daher $\abs{\Syl_p(G)}$ Teiler von $m$.
|
|
|
|
3.1.4 Korrolar: (Cauchy's Theorem) $G$ hat ein Element der Ordnung $p$ ($p \mid \abs{G}$) \\
|
|
3.1.5 Satz: Sei $N \trianglelefteq G (N \neq G)$, und sei $P \in \Syl_p(G)$. Dann ist $PN/N \in \Syl_p(G/N)$ und $P \cap N \in \Syl_p(N)$. \\
|
|
Beweis: $[G/N : PN/N] = [G : PN]$ wegen 3. Isosatz. $PN/N \cong P/(P\cup N) \Rightarrow PN/N$ ist Gruppe. \\
|
|
$p \nmid [G:P] = \abs{G}_{p'} \Rightarrow [G : PN]$ ist Teiler von $m$, wird nicht von $p$ geteilt. \\
|
|
$\Rightarrow PN/N \in \Syl_p(G/N)$. \\
|
|
Nach 1.3.12 ist $[PN : P] = \frac{\abs{P} \cdot \abs{N}}{\abs{P \cap N}\abs{P}} = \frac{\abs{N}}{\abs{P \cap N}} \Rightarrow$ (nach oben) $P \cap N$ ist $p$-Untergruppe von $N$ mit $[N : P \cap N]$ wird nicht von $p$ geteilt. Also ist $P \cap N \in \Syl_p(N)$. \qed \\
|
|
Vorsicht: $H \leq G \nRightarrow H \cap P \in \Syl_p(H)$ für $P \in \Syl_p(G)$
|
|
|
|
3.1.6 Satz: Sei $H \leq G, P \in \Syl_p(G)$. Dann gibt es $g \in G$ so, dass $g P g^{-1} \cap H \in \Syl_p(H)$ ist. \\
|
|
Beweis: Sei $Q \in \Syl_p(H) \Rightarrow \exists P' \in \Syl_p(G)$ mit $Q \subseteq P' \Rightarrow \exists g \in G$ mit $P' = gPg^{-1} \cap H \supseteq Q$ \\
|
|
Klar: $Q = P' \cap H$ (warum?)
|
|
|
|
\underline{Anwendungen}: \\
|
|
|
|
3.1.7 Satz ("`$pq$-Theorem"'): Seien $p, q$ Primzahlen mit $p > q$. Sei $G$ Gruppe mit $\abs{G} = p \cdot q$. Dann ist $G$ abelsch (und daher $\cong C_{q \cdot p} \cong C_q \times C_p$) oder $p \equiv 1 \mod q$. Ist dies so, dann gibt es bis auf Isomorphie genau eine nicht abelsche Gruppe der Ordnung $p \cdot q$. \\
|
|
Beweis: Sei $P \in \Syl_p(G), Q \in \Syl_q(G) \Rightarrow \abs{P} = p, \abs{Q} = q \Rightarrow P \cong C_p \wedge Q \cong C_q$. Wir haben $P \cap Q = (1)$, und daher ist $G = P \cdot Q$ (1.3.12).
|
|
Mit 3.1.3 folgt $\abs{ \Syl_p(G) } \mid [G:P] $ und mit 3.1.4 $ \abs{\Syl_p(G)} \cong 1 \mod p$ \\
|
|
$ \Rightarrow \abs{\Syl_p(G)} = 1 = [G : N_G(P)] \Rightarrow N_G(P) = G \Rightarrow P \trianglelefteq G$ ($p > q \Rightarrow q \ncong 1 \mod p$). \\
|
|
|
|
Ist $p \ncong 1 \mod q \Rightarrow $ (analog) $ Q \trianglelefteq G \Rightarrow G = P \times Q$ \\
|
|
|
|
Sei also $p \cong 1 \mod q$. Sei $G$ nicht abelsch, $\varphi : Q \rightarrow \Aut(P): x \mapsto c_x, c_x: P \rightarrow P: y \mapsto x y x^{-1}$. \\
|
|
$ \ker \varphi \neq (1) \Rightarrow \ker \varphi = Q \Rightarrow \varphi Q \Rightarrow (1) \leq P$ und $c_x = \id_P \Rightarrow G = P \times Q$, $G$ abelsch. Widerspruch! \\
|
|
Also ist $\ker \varphi = (1)$, d.h. $\varphi$ ist injektiv. Sei $P = <g>$. Leicht: Sei $1 \leq i \leq p-1$, so induziert $g \mapsto g^i$ einen Automorphismus $\sigma_i$ von $P = C_p = <g>$,
|
|
und $\Aut(P) = \set{ \sigma_i | 1 \leq i \leq p-1}$ ist zyklisch der Ordnung $p-1$.
|
|
|
|
Nun ist $q \mid p - 1$, also hat $C_{p-1} \cong \Aut(C_p)$ eine eindeutige Untergruppe der Ordnung q, und diese ist isomorph zu $C_q \cong Q$. \\
|
|
Also: Unter $\varphi$ wird $Q$ auf die \underline{eindeutig bestimmte} Untergruppe der Ordnung $q$ von $\Aut(P)$ abgebildet. \\
|
|
Beachte: Ist $\psi: Q \rightarrow \Aut(P)$ ein Monomorphismus, so ist $\im \varphi = \im \psi$, es gibt aber viele Monomorphismen von $Q \rightarrow \Aut(P)$. \\
|
|
Für jeden solchen Monomorphismus $\psi$ haben wir eine Gruppe $P \rtimes_\psi Q$. \\
|
|
Der nächste Satz zeigt: Alle diesen semidirekten Produkte sind isomorph. Also gibt es in diesem Fall ($p \cong 1 \mod q$) genau eine nichtabelsche Gruppe der Ordnung $p \cdot q$. \qed
|
|
|
|
3.1.8 Satz: Sei $H$ zyklische Gruppe, $N$ Gruppe. Seien $\varphi, \psi$ Monomorphismen von $H \rightarrow \Aut(N)$ mit $\im \varphi = \im \psi$. Dann ist $N \rtimes_\varphi H \cong N \rtimes_\psi H$. \\
|
|
Beweis: Sei $H = <x>$. Wegen $\varphi(H) = \psi(H)$ ist $<\varphi(x)> = <\psi(x)> \leq \Aut(N)$. Es gibt also $a, b \in \Z$ mit $\varphi(x)^a = \psi(x)$ und $\psi(x)^b = \varphi(x)$.
|
|
Für $s \in \Z$ ist dann $\varphi((x^s)^a) = \varphi(x)^{as} = \psi(x)^s = \psi(x^s)$, d.h. $\varphi(h^a) = \psi(h) \forall h \in H$, analog $\psi(h^b) = \varphi(h) \forall h \in H$. \\
|
|
Definiere $\tau: N \rtimes_\psi H \rightarrow N \rtimes_\varphi H$ durch $\tau(n \cdot h) = n \cdot h^a$ und $\lambda: N \rtimes_\varphi H \rightarrow N \rtimes_\psi H$ durch $\lambda(n \cdot h) = n \cdot h^b$ \\
|
|
$\tau(n_1 h_1 n_2 h_2) = \tau(n_1 \psi(h_1)(n_2) h_1 h_2) = n_1 \psi(h_1)(n_2) (h_1 h_2)^a = n_1 \varphi(h_1^a)(n_2) h_1^a h_2^a = n_1 h_1^a n_2 h_2^a = \tau(n_1 h_1) \tau(n_2 h_2)$ \\
|
|
$ \Rightarrow \tau $ (und analog $\lambda$) ist Gruppenhomomorphismus. \\
|
|
Nun ist $\tau \lambda : nh \mapsto \tau(n\cdot h^b) = n\cdot h^{ba}$, aber $\varphi(x) = \psi(x)^b = (\varphi(x^a))^b = \varphi(x^{ab})$ und $\varphi$ ist injektiv. Also ist $x = x^{ab}$ und daher $h = h^{ab} \forall h \in H$, also ist $\tau \lambda = \id_{N \rtimes_\varphi H}, \lambda \tau = \id_{N \rtimes_\psi H}$ \\
|
|
Also sind $\tau, \lambda$ Isomorphismen und $N \rtimes_\varphi H \cong N \rtimes_\psi H$, \qed.
|
|
|
|
Erinnerung: $A_5$ ist einfach $A_5 \leq \sigma_5$, $\abs{\sigma_5} = 5! = 120 \Rightarrow A_5 = 60 = 3 \cdot 5 \cdot 2^2$.
|
|
|
|
3.1.9 Satz: Sei $G$ einfach, $\abs{G} = 60$. Dann ist $G \cong A_5$. \\
|
|
Beweis: Sei $n \in \N$ und $H \lneq G$ mit $[G : H] = n$. Sei $\rho: G \rightarrow \sigma_n$ die Darstellung, die zu der $G$-Menge $G/H$ gehört.
|
|
$\Rightarrow \rho$ ist injektiv. Insbesondere ist $\abs{G} = 60 \leq n! \Rightarrow n \geq 5$. \\
|
|
Beh: $G$ besitzt eine Untergruppe von $H$ mit $[G : H] = 5$. \\
|
|
Angenommen, $G$ besitzt keine solche Untergruppe: $\abs{\Syl_2(G)} \neq 1$ teilt $3 \cdot 5= 15$, sonst wäre $G$ nicht einfach. Sei $P \in \Syl_2(G)$. Betrachte Möglichkeiten für $\abs{\Syl_2(G)}$: \\
|
|
~~ 3: $[G:N_G(P)] = 3 < 5$ Widerspruch! \\
|
|
~~ 5: $[G:N_G(P)] = 5$ Widerspruch zur Annahme \\
|
|
Also ist $[G:N_G(P)] = 15$ Seien $S_1, S_2 \in \Syl_2(G), S_1 \neq S_2$. Sei $1 \neq t \in S_1 \cap S_2$. $V_4 = C_2 \times C_2, C_4$ sind die einzigen Gruppen der Ordnung $4$.
|
|
$\Rightarrow S_1$ und $S_2$ sind abelsch $\Rightarrow \abs{C_G(t)} > 4$ und $4 \mid \abs{C_G(t)}$, da $S_1 \leq C_G(t)$.
|
|
$\Rightarrow [G:C_G(t)] \in \set{1,3,5} \Rightarrow [C:C_G(t)] = 1 \Rightarrow t \in Z(G) \trianglelefteq G$ Widerspruch zur Einfachheit von $G$. \\
|
|
Also hat $G:$ $15(4-1) = 45$ der Ordnung $2$ oder $4$. Da $G$ einfach ist, gilt für $P \in \Syl_5(G): 1 \neq [G:N_G(P)] \mid 4 \cdot 3$ und $[G:N_G(P)] \cong 1 \mod 5$, also nicht $\set{1, 2, 3, 4, 12}$ - also hat $G$ genau $6$ $5$-Sylowgruppen, und daher $6(5-1)=24$ Elemente der Ordnung 5. Also ist $\abs{G} \leq 45+24 > 60$ Widerspruch. Also hat $G$ eine Untergruppe $H$ mit $[G:H] = 5$. \\
|
|
Sei wieder $\varphi: G \rightarrow \sigma_5$ die Darstellung auf $G/H$. Diese ist injektiv, so ist $G$ ohne Einschränkung Untergruppe von $\sigma_5$ vom Index 2, da die $\abs{G} = 60 = \frac{120}{2} = \frac{\abs{\sigma_5}}{2}$. Also ist $G \trianglelefteq \sigma_5$. Angenommen $G \neq A_5 \Rightarrow \abs{G \cdot A_5} > 60 \Rightarrow G \cdot A_5 = \sigma_5$. \\
|
|
Nach 1.3.12: $\abs{G \cap A_5} = \frac{\abs{G} \abs{A_5}}{G \cdot A_5} = 30$. Also ist $G \cap A_5$ Untergruppe von $G$ vom Index 2 - Widerspruch. Also $G = A_5$.
|
|
|
|
3.1.10 Korrolar: $\PSL_2(4) \cong \PSL_2(5) \cong A_5$, da $\PSL_2(4)$ und $\PSL_2(5)$ einfach mit Ordnung 60.
|
|
|
|
Bemerkung: Man kann zeigen: Alle anderen Gruppen $\PSL_n(q)$ sind paarweise verschieden (?). \\
|
|
Relativ leichte Übung: Ist $G$ einfach und $\abs{G} < 60$ so folgt $G \cong C_{\abs{G}}$
|
|
|
|
3.1.11 Satz "`Frattini Argument"': Sei $G$ endliche Gruppe, $N \trianglelefteq G$ und $P \in \Syl_p(N)$, $p$ Primzahl. Dann ist $G = N_G(P) \cdot N$. \\
|
|
Beweis: Sei $g \in G$. Wegen $gNg^{-1} = N \trianglelefteq G$ ist $gPg{-1} \subseteq N \Rightarrow gPg^{-1} \in \Syl_p)N)$. Also gibt es $n \in N: n ( gPg^{-1} ) n^{-1} = P = ng P (ng)^{-1}$
|
|
$ \Rightarrow ng \in N_G(P) \Rightarrow g \in n^{-1} N_G(P) \subseteq N N_G(P) = N_G(P) N$. \qed
|
|
|
|
% Kapitel 4
|
|
\chapter{Normalteilerstruktur}
|
|
|
|
% Para 1
|
|
\section{Satz von Jordan-Hölder}
|
|
|
|
Sei im folgenden $G$ eine beliebige Gruppe.
|
|
|
|
4.1.1 Definition: Sei $\Omega$ eine Menge, dann heißt $G$ Gruppe mit Operatorenbereich $\Omega$ (kurz $\Omega$-Gruppe), falls es eine externe binäre Verknüpfung $\Omega \times G \rightarrow G: (\alpha, g) \mapsto \alpha g \in G$ gibt mit $\alpha (g_1 g_2) = (\alpha g_1) (\alpha g_2) \forall g_1, g_2 \in G, \alpha \in \Omega$. \\
|
|
\underline{Äquivalente Formulierung:} Es gibt eine Abbildung von $\Omega \rightarrow \set{\sigma: G \rightarrow G \mid \sigma \text{ ist Gruppenhom.}}$.
|
|
|
|
Eine Untergruppe $H$ der $\Omega$-Gruppe $G$ heißt \underline{zulässig} ($\Omega$-Untergruppe, $H \leq_\Omega G$), falls $\alpha h \in H \forall h \in H, \alpha \in \Omega$, und sie heißt zulässiger Normalteiler
|
|
($\Omega$-Normalteiler, $H \trianglelefteq_\Omega G$), wenn $H$ zusätzlich Normalteiler von $G$ ist.
|
|
|
|
Klar: Homomorphismen von $\Omega$-Gruppen: $F: G \rightarrow X$ Gruppenhomomorphismus mit $f(\alpha g) = \alpha f(g)$, $G, X$ $\Omega$-Gruppen, $g \in G, \alpha \in \Omega$ \\
|
|
Es gelten Isosätze, Kerne von $\Omega$-Homomorphismen sind $\Omega$-Normalteiler, Bilder sind $\Omega$-Untergruppen. \\
|
|
Eine $\Omega$-Gruppe heißt \underline{einfach}, falls sie keine nichttrivialen $\Omega$-Normalteiler hat.
|
|
|
|
4.1.2 Beispiele: $G: \Omega$-Gruppe
|
|
\begin{enumerate}[i)]
|
|
\item $\Omega = \emptyset$: zulässigen Untergruppen = Untergruppe von $G$, zulässigen Normalteiler = Normalteiler von $G$.
|
|
\item $\Omega = \Inn(G)$ ($\Omega = G$ operiert durch Konjugation auf $G$): zulässigen Untergruppen = zulässigen Normalteiler = Normalteiler von $G$.
|
|
\item $\Omega = \Aut(G)$: zulässigen Untergruppen = char. Untergruppen von $G$.
|
|
\item $G = (R, +)$ = add. Gruppe eines Rings $R$ mit 1 (alle Untergruppen sind Normalteiler) \\
|
|
$\Omega = R$ operiert auf $G$ per Multiplikation von links (rechts). Die $\Omega$-Untergruppen von $(R, +)$ sind genau die Linksideale (Rechtsideale) von $R$.
|
|
Links-Rechts-Operation: $\Omega \times G \times \Omega \rightarrow G: (\alpha, g, \beta) \mapsto \alpha g \beta$ mit $(\alpha g) \beta = \alpha (g \beta)$. \\
|
|
Für $(R, +)$ mit $\Omega = R$ sind dann die zulässigen Untergruppen die Ideale von $R$.
|
|
\item $M = G = $ additive abelsche Gruppe mit $R$-Modul, $R = $ Ring $ \ni 1$, $M$ ist eine $R$-Gruppe unter Linksmultiplikation mit Elementen von $R$. \\
|
|
Die zulässigen $R$-Untergruppen = zulässige $R$-Normalteiler = Untermoduln (analog für Rechtsmoduln).
|
|
\end{enumerate}
|
|
|
|
Jetzt sei $\Omega$ eine Menge und $G$ eine $\Omega$-Gruppe.
|
|
|
|
Definition: Eine endliche Folge $G = G_0 >_\Omega G_1 >_\Omega G_2 >_\Omega \ldots >_\Omega G_r = (1)$ von $\Omega$-Untergruppen heißt \underline{Kompositionsreihe} von $G$,
|
|
falls $G_{i+1} \trianglelefteq_\Omega G_i$ und $G_i/G_{i+1}$ ist einfache $\Omega$-Gruppe.
|
|
|
|
Beispiel: $\sigma_5 \trianglerighteq A_5 \trianglerighteq (1)$ ist eine Kompositionsreihe mit "`Kompositionsfaktoren"' $ \sigma_5 / A_5 \cong C_2, A_5 = A_5/(1)$.
|
|
|
|
Definition: $N$ ist maximale normale $\Omega$-Untergruppe von $G$, falls $G \neq N \trianglelefteq_\Omega G$ und kein $\Omega$-Normalteiler von $G$ echt zwischen $N$ und $G$ existiert $\Rightarrow G/N $ einfache $\Omega$-Gruppe.
|
|
|
|
Beachte: Für $\Omega$-Gruppen gelten die 3 Isomorphiesätze, und daher der Korrespondenzsatz 1.1.11.
|
|
|
|
4.1.3 Satz: Endliche Gruppen ($\Omega = \emptyset$) besitzen Kompositionsreihen. Beweis klar.
|
|
|
|
4.1.4 Korrolar: Sei $G$ endliche Gruppe ($\Omega = \emptyset$), und sei $N \trianglelefteq G$. Dann besitzt $G$ eine Kompositionsreihe "`durch"' N, d.h. $N$ kommt als eine der Untergruppen $G_i$ vor. \\
|
|
Beweis: Sei $N = N_0 > N_1 > N_2 > \ldots > N_k = (1)$ Kompositionsreihe von $N$ und $G/N = H_0 > H_1 > \ldots > H_r = (1)$ Kompositionsreihe von $G/N$, $G_i =$ volles Urbild von $H_i$ in $G/N$, also
|
|
$G_i = \set{g \in G \mid gN \in H_i}$. \\
|
|
1.1.11 $\Rightarrow G = G_0 > G_1 > \ldots > G_{r-1} > N = N_0 > \ldots > N_k = (1)$ Kompositionsreihe von $G$ durch $N$. \\
|
|
|
|
4.1.5 Lemma: Sei $G$ beliebige $\Omega$-Gruppe mit einer Kompositionsreihe. Sei $N \trianglelefteq_\Omega G$, dann besitzt $N$ ebenfalls eine Kompositionsreihe. \\
|
|
Beweis: Sei $G = G_0 > G_1 > \ldots > G_r = (1)$ Kompositionsreihe von $G$. Sei $N_i = N \cap G_i$. Dann ist $N = N_0 \geq N_1 \geq \ldots \geq N_r = (1)$ \\
|
|
Dann ist $N_{i+1} = G_{i+1} \cap N \trianglelefteq N_i = G_i \cap N$ und $N_i/N_{i+1} = (N \cap G_i)/(N \cap G_{i+1}) = (N \cap G_i)/((N \cap G_i) \cap (G_{i+1}))
|
|
\cong$ (2. Isosatz) $((N \cap G_i)G_{i+1})/G_{i+1} \trianglelefteq G_i/G_{i+1}$ (Korrespondenzsatz) \\
|
|
Also ist, da $G_i/G_{i+1}$ einfach ist, entweder $N_i/N_{i+1} = (1)$ (d.h. $N_i = N_{i+1}$), oder $N_i/N_{i+1} \cong G_i/G_{i+1}$ einfach. \\
|
|
So erhalten wir eine Kompositionsreihe von $N$ durch Streichung der Wiederholungen in $N = N_0 \geq N_1 \geq \ldots \geq N_r = (1)$. \qed
|
|
|
|
Definition: Eine Kette $G = G_0 > G_1 > \ldots > G_r = (1)$ heißt $\Omega$-Subnormalkette, falls $G_{i+1} \trianglelefteq_\Omega G$ ist, und $\Omega$-Normalkette, falls $G_i \trianglelefteq_\Omega G$ ist.
|
|
|
|
Seien $G = G_0 > G_1 > \ldots > G_r = (1)$ und $G = H_0 > H_1 > \ldots > H_r = (1)$ zwei Subnormalketten derselben Länge $r$. Dann heißen diese äquivalent, fall es ein $\rho \in \sigma_r$ gibt mit $G_{i-1}/G_i \cong H_{\rho(i)-1}/H_{\rho(i)}$ für $1 \leq i \leq r$. \\
|
|
Klar: Dies ist eine Äquivalenzrelation auf der Menge der Subnormalketten der Länge $r$ von $G$.
|
|
|
|
4.1.6 Satz (Jordan-Hölder): Sei $G$ eine $\Omega$-Gruppe und besitze $G$ eine Kompositionsreihe. Dann haben je zwei Kompositionsreihen von $G$ dieselbe Länge und sind äquivalent. \\
|
|
Konsequenz: In einer Kompositionsreihe einer $\Omega$-Gruppe (= einfache $\Omega$-Gruppen), sind die vorkommenden einfachen Kompositionsfaktoren mit ihren Multiplizitäten eindeutig bestimmt (aber nicht die Reihenfolge).
|
|
|
|
Beweis: Seien $G = G_0 > G_1 > \ldots > G_r = (1)$ und $G = H_0 > H_1 > \ldots > H_s = (1)$ zwei Kompositionsreihen von $G$. \\
|
|
Induktion über $r$: \\
|
|
$r = 0$: $G = (1)$ trivial. \\
|
|
$r = 1$: $G \trianglerighteq (1)$ ist Kompositionsreihe $\Rightarrow G$ ist einfach $\Rightarrow s = s, H_1 = (1)$. \\
|
|
Sei $r > 1$ und die Behauptung bewiesen für alle $\Omega$-Gruppen mit einer Kompositionsreihe der Länge $< r$. \\
|
|
Ist $G_1 = H_1$, so hat $G_1 = H_1$ die Kompositionsreihe $G_1 > G_2 > \ldots > G_r = (1)$ der Länge $r-1$ und $H_1 > H_2 > \ldots > H_s = (1)$, die nach Induktionsvoraussetzung äquivalent sind und $r-1 = s-1$, also $r = s$ und mit $G_/G_1 = H/H_1$ fertig. \\
|
|
Sei also $G_1 \neq H_1$. Wegen $G_1 \trianglelefteq G_0 = G, H_1 \trianglelefteq H_0 = G$ ist $G_1 \lneq G_1 H_1 \trianglelefteq G$. Da $G/G_1$ einfach ist, ist also $G_1 H_1 = G$. \\
|
|
Sei $K = G_1 \cap H_1$, dann ist $G/G_1 \cong H_1/K$ und $G/H_1 \cong G_1/K$. \\
|
|
Also sind $G_1/K$ und $H_1/K$ einfache $\Omega$-Gruppen. \\
|
|
Beachte $K \trianglelefteq G$, also besitzt $K$ eine Kompositionsreihe $K = K_0 > K_1 > \ldots > K_t = (1)$. \\
|
|
$G_1 > K_0 > K_1 > \ldots > K_t = (1)$ ist Kompositionsreihe von $G$ der Länge $t+1$, die nach Induktionsvoraussetzung äquivalent zu $G_1 > G_2 > \ldots > G_r$ ist, und $t+1=r-1$, analog $t+1=s-1$, also $r = s$. \\
|
|
Wegen $G/G_1 \cong H_1/K$ und $G/H_1 \cong G_1/K$ sind die ursprünglichen Kompositionsreihen äquivalent.
|
|
|
|
4.1.7 Beispiele:
|
|
\begin{enumerate}[i)]
|
|
\item $\Omega = \emptyset$, Kompositionsreihen sind Subnormalketten $G = G_0 > G_1 > \ldots > G_r = (1)$ mit $G_{i+1} \trianglelefteq G_i$ und $G_i/G_{i+1}$ einfache Gruppe.
|
|
\item $M$ ist $R$-Module, $R = K$-Algebra, $\dim_K(M) < \infty \Rightarrow M $ hat Kompositionsreihe.
|
|
\item $G$ ist $\Omega$-Gruppe mit $\Omega = \Inn(G), G = G_0 > \ldots > G_r = (1)$ mit $G_i \trianglelefteq G$ und $G_i/G_{i+1}$ einfache Gruppe ("`Normalreihe"', Hauptreihe mit Hauptfaktoren $G_i/G_{i+1}$)
|
|
\item $R = \text{Ring} \ni 1, G = (R, +), \Omega = R$ operiert durch Linksmultiplikation. Kompositionsreihe: $R = R_0 > \ldots > R_r = (0)$, $R_i$ Linksideale von $R_1$, $R_i/R_{i+1}$ einfacher $R$-Modul.
|
|
\item $R = \text{Ring} \ni 1, M = $ abelsche Gruppe, $R$-Linksmodul. $M = M_0 > \ldots > M_r = (0)$ mit $M_i/M_{i+1}$ irreduzibler $R$-Modul.
|
|
\end{enumerate}
|
|
|
|
Beachte: Ist $G = G_0 > G_1 > \ldots > G_r$ eine Hauptreihe für $G$, so ist $G_i/G_{i+1}$ minimaler Normalteiler von $G/G_{i+1}$ (Korrespondenzsatz)
|
|
|
|
4.1.8 Satz: Ein minimaler Normalteiler einer endlichen Gruppe $G$ ist direktes Produkt von Kopien einer einzigen einfachen Gruppe. \\
|
|
Beweisidee: Sei $(1) \neq N \trianglelefteq G, N \neq G$ minimaler Normalteiler von $G$. Ist $N$ einfachh, so sind wir fertig. \\
|
|
Sei $N$ nicht einfach und sei $(1) \neq N_1$ maximaler echter Normalteilervon $N$. Seien $N_1, \ldots, N_k$ die verschiedenen $G$-konjugierten von $N_1$ ($N_i = g_i N g_i^{-1}$ für ein $g_i \in G$).
|
|
Nun ist $g_i N_1 g_i^{-1} \subseteq g_i N g_i^{-1} = N \Rightarrow N_1, \ldots, N_k \leq N$. Es gilt also $N_i \trianglelefteq N$ \\
|
|
Man kann zeigen, dass alle $N/N_i$ isomorph und einfach und $N \cong $ direktes Produkt eines Teils der $N/N_i$. (Details Übung)
|
|
|
|
4.1.9 Satz: Endliche Gruppen besitzen eine Hauptreihe (Kompositionsreihe mit $\Omega = \Inn(G)$). Jeder Hauptfaktor ist minimale normale Untergruppe einer Faktorgruppe von $G$ und
|
|
daher direktes Produkt von Kopien einer einfachen Gruppe. \\
|
|
Beweis: Sei $G$ endliche Gruppe. Induktion über $\abs{G}$. $\abs{G} = 1$ trivial. \\
|
|
Ist $(1) \neq G$ und $G$ einfach, so ist $G > (1)$ eine Hauptreihe. \\
|
|
Sei also $G$ nicht einfach und $N \neq (1)$ minimaler Normalteiler von $G$. Nach Induktion besitzt $G/N$ eine Hauptreihe $G/N = G_0/N > G_1/N > \ldots > G_r/N = (1)$ mit $G_i$ = volles Urbild von $(G/N)_i$ in $G$
|
|
$\Rightarrow G = G_0 > G_1 > \ldots > G_r = N > G_{r+1} = (1)$ ist Hauptreihe für $G$. \qed
|
|
|
|
Übung: Sei $G$ Gruppe. Hat $G$ eine Kompositionsreihe ($\Omega = \emptyset)$, so auch eine Hauptreihe ($\Omega = \Inn(G)$).
|
|
|
|
\chapter{Lineare Darstellung}
|
|
|
|
\section{Grundlagen}
|
|
|
|
\subsection{Gruppenalgebren}
|
|
|
|
Alle Ringe haben Einselement $1 = 1_R$, aber sind nicht notwendigerweise kommutativ.
|
|
|
|
Bekannt: Unterring, Rechts-/Linksideale ($\Reid, \Liid$), Ideale, Ringhomomorphismen, $\ker$, $\im$, Faktorringe, Isosätze \ldots
|
|
|
|
$K = $ Körper: Selbe Liste für $K$-Algebren.
|
|
|
|
Allgemein: $\Lambda =$ kommutativer Ring $\ni 1$, Eine $\Lambda$-Algebra is ein Ring $R$ mit Einselement zusammen mit einem einserhaltenden Ringhomomorphsimus $f$ von $\Lambda \rightarrow Z(R) = \set{r \in R | rs = sr \forall s \in R}$, $Z(R)$ ist immer ein Unterring von $R$, $1_R \in Z(R)$, so dass gilt: \\
|
|
(Wir schreiben $\Lambda r$ statt $f(\Lambda)r$ für $\lambda \in \Lambda. r \in R$) \\
|
|
$\lambda r = r \lambda \forall r \in R$ ($f$ nicht notwendigerweise injektiv) \\
|
|
Beachte: $\overline{f}: \Lambda/\ker f \rightarrow Z(r)$ ist injektiv, d.h. $R$ ist $\overline{\Lambda}$-Algebra mit $\overline{\Lambda} = \Lambda / \ker f$
|
|
|
|
Beachte:
|
|
\begin{enumerate}[i)]
|
|
\item Jeder Ring ist $\Z$-Algebra durch $z \mapsto z \cdot 1_R$.
|
|
\item Unterringe einer $\Lambda$-Algebra sind nicht notwendigerweise Uneralgebren, aber Rechtsideale und Linksideale sind es. Nicht jeder Ringhomomorphsimus zwischen $\Lambda$-Algebren ist Algebra Homomorphismus (auch $\Lambda$-linear).
|
|
\end{enumerate}
|
|
|
|
Beispiele:
|
|
\begin{enumerate}[i)]
|
|
\item $K^{n \times n}, \End_K(V), V = K$-Vektorraum
|
|
\item Auf $R = \C^2$ definieren wir eine Multiplikation durch $(\alpha, \beta)(\gamma, \delta) = (\alpha \gamma + \beta \delta, \alpha \delta + \beta \gamma)$ \\
|
|
Übung: $R$ ist 2-dimensionale kommutative $\C$-Algebra. $\C$-Basis: $\set{e := (1,0), a := (0,1)}$ \\
|
|
$e \cdot e = (1,0)(1,0) = (1,0) = e, a \cdot e = e \cdot a = (0, 1) = a, a \cdot a = (1,0) = e$ \\
|
|
$(\set{e, a}, \cdot) = C_2$
|
|
\end{enumerate}
|
|
|
|
5.1.1 Definition: $\Lambda = $ kommutativer Ring $\ni 1$, $A = \Lambda$-Algebra, so dass gilt:
|
|
\begin{enumerate}[i)]
|
|
\item Als $\Lambda$-Modul ist $A$ frei mit einer Basis $\cB$ so dass gilt:
|
|
\item $(\cB, \cdot) \cong G$ = Gruppe
|
|
\item Dann heißt $A$ Gruppenalgebra über $\Lambda$ der Gruppe $G$ und wird mit $\Lambda G$ bezeichnet.
|
|
\end{enumerate}
|
|
|
|
Fragen:
|
|
\begin{enumerate}[i)]
|
|
\item $G$ Gruppe, $\Lambda =$ kommutativer Ring $\ni 1$ \\
|
|
Gibt es eine Gruppenalgebra $\Lambda G$?
|
|
\item Gibt es genau eine Gruppenalgebra $\Lambda G$ Ja (trivial)
|
|
\item Bestimmt die Gruppenalgebra die Gruppe $G$, d.h. ist $\Lambda G \cong \Lambda H \Rightarrow G \cong H$? Nein! \\
|
|
$\abs{G} < \infty$. Klar $\abs{G} = \abs{H}$. \\
|
|
$\Lambda = \C$: Viele Gegenbeispiele: $\C D_8 \cong \C Q_8$, \ldots \\
|
|
$\Lambda = \Z$ (Highman, $\sim$ 1930) Vermutung: $\Z G \cong \Z H \Rightarrow G \cong H$? Nein, Gegenbeispiel: \\
|
|
$\abs{G} = \abs{H} = 2^21 \cdot 97^28$ (?) (Hertweck) \\
|
|
Es gibt kleinere! (aber nicht sehr viel kleinere)
|
|
\end{enumerate}
|
|
|
|
5.1.3 Konstruktion von $\Lambda G$: Die Gruppenalgebra $\Lambda G$ ist als $\Lambda$-Modul der freie $\Lambda$-Modul über der Menge $G$, d.h.
|
|
$\Lambda G = \set{ \sum_{g \in G} \alpha_g g \mid \alpha_g \in \Lambda, \text{ fast alle }\alpha_g = 0}$ \\
|
|
$(\sum \lambda_g g) + (\sum \mu_g g) = \sum (V + \mu_g) g$ \\
|
|
$\beta (\sum \lambda_g g) = \sum (\beta \lambda_g)g$ \\
|
|
$(\sum \alpha_g g)(\sum \beta_h h) = \sum_{g,h} \alpha_g \beta_h (g \cdot h) = \sum_x (\sum_{gh=x} \alpha_g \beta_h) x = \sum_x (\sum_g \alpha_g \beta_{g^{-1}x}) x$
|
|
|
|
5.1.4 Satz: Seien $\Lambda$, G, $\Lambda G$ wie oben beschrieben. Dann $\Lambda G$ assoziative $\Lambda$-Algebra mit Einselement $1_{\Lambda G} = \sum \alpha_g g$ mit $\alpha_g = 1$ für $g=1$ und sonst $0$. ($\alpha_g = 1_G$). Durch $g: \mapsto \sum_h a_h h$ mit $a_h = 1$ für $h = g$ und 0 sonst wird $G$ in $\Lambda G$ eingebttet und bildet eine $\Lambda$-Basis von $\Lambda G$.
|
|
Beweis: Trivial.
|
|
|
|
Andere Notation: $\sum \alpha_g g \mapsto $ Abbildung $G \rightarrow K: g \mapsto \alpha_g \in \Lambda$ mit $\alpha_g = 0$ für fast alle $g$. \\
|
|
$\Lambda G = \set{f \ in \Lambda^G \mid f(g) = 0 \text{ für fast alle } g \in G}$ \\
|
|
$x, y \in \Lambda G \subseteq \Lambda^G:$ Für $g \in G$ ist $(x+y)(g) = x(g) + y(g), (\lambda x)(g) = \lambda x(g), (xy)(g) = \sum_h x(h)y(h^{-1}g)$ "`Faltung"' \\
|
|
Erinnerung: $A = \Lambda$-Algebra, $M = A$-Linksmodul, d.h. $(M, +)$ ist abelsche Gruppe mit binärer Operation von $A \times M \rightarrow M: (a, m) \mapsto am$ mit $1_A m= m, (ab)m = a(bm), a(m+n) = am+an, (a+b)m = am + bm \forall a,b \in A, m,n \in M$
|
|
|
|
$A^{mod} = $ Klasse der $A$-Linksmoduln, $\lsup{mod}{A} = $ Klasse der Rechtsmoduln.
|
|
|
|
Definition: $G=$ Grupoe, $K=$ Körper. Eine (lineare)-Darstellung von $G$ vom Grad $n$ ist ein Homomorphismus $\rho: G \rightarrow \GL_n(K)$
|
|
lineare Darstellung von $G$ über dem $K$-Vektorraum $V$ ist ein Homomorphismus $\varphi: G \rightarrow \Aut_k(V)$.
|
|
|
|
Klar:
|
|
\begin{diagram}
|
|
G & \rTo^\varphi & \Aut_K(V) & \rTo^{\sim}_{\text{Wahl der Basis}} & \GL_n(K) & ~~ n = \dim_V (K) \\
|
|
\dInto & & \dInto & & \dInto \\
|
|
KG & \rTo & \End_K(V) & \rTo^{\sim}_{\text{Wahl der Basis}} & M_{n \times n}(K) \\
|
|
\end{diagram}
|
|
|
|
Für eine $K$-Algebra $A$ ist eine Darstellung von $A$ über dem $K$-Vektorraum $V$ ein $K$-Algebra-Homomorphismus $A \rightarrow \End_K(V) \cong M_{n \times n}(K) (\dim_K V = n)$ \\
|
|
Sei $\rho: KG \rightarrow \End_K(V)$ Darstellung. Dann wird $V$ zum $KG$-Modul durch $x \cdot m = (\rho(x))(m)$ für $y \in KG$ und $m \in V$. \\
|
|
Umgekehrt: Ist $V$ ein $A$-Modul, so wird durch $\rho: A \rightarrow \End_K(V): a \mapsto \lambda_a, \lambda_a(v) = av$ für $a \in A, v \in V$ eine Darstellung von $A$ über $V$ definiert. \\
|
|
So: Konzept der Darestellungen von $A$ ist äquivalent zum Konzept der $A$-Moduln. (Vgl. Permutationsdarstellungen). \\
|
|
Homomorphismen von $A$-Moduln: Klar. \\
|
|
Homomorphismen von Darstellungen: Seien $\rho : A \rightarrow \End_K(V), \psi : A \rightarrow \End_K(W)$ Darstellungen von $A$. Ein Homomorphismus von $\rho$ nach $\psi$ ist ein $K$-lineare Abbildung $f: V \rightarrow W$, so dass $\forall a \in A: f \circ \rho(a) = \psi(a) \circ f$
|
|
\begin{diagram}
|
|
V & \rTo^f & W \\ \dTo^{\rho(a)} & & \dTo_{\psi(a)} \\ V & \rTo^f & W
|
|
\end{diagram}
|
|
|
|
Beachte: $W = V$ mit $f \in \Aut_K(V)$ Homomorphismus von $\rho$ nach $\psi \Leftrightarrow \psi(a) = f \circ \rho(a) \circ f^{-1} \forall a \in A$ \\
|
|
$\dim_K(V) = n, \tilde{\rho}: A \rightarrow M_{n \times n}(K), \tilde{\psi}: A \rightarrow M_{n \times n}(K)$ zugehörige Matrixdarstellungen nach Wahl einer Basis $\cB$, so
|
|
kann man $f$ als Basiswechsel interpretieren: $m_{\id}(\cC, \cB)= m_f(\cB, \cB)$ für Basis $\cC$ von $V$. \\
|
|
$m_{\tilde{\psi}}(\cC, \cC) = m_{\id}(\cC, \cB) m_{\tilde{\rho}}(\cB, \cB) m_{\id}(\cB, \cC)$ (Details: Übung)
|
|
|
|
Definition: Seien $A, B$ $\Lambda$-Algebren mit $1$ und sei $M$ ein $A$-Linksmodul und ein $B$-Rechtsmodul. $M$ heißt $A$-$B$-Bimodul falls gilt: \\
|
|
$\forall \alpha \in A, \beta \in B, m \in M: (\alpha m) \beta = \alpha (m \beta)$ \\
|
|
($M$ $A$-Linksmodul und $B$-Linksmodul: $\alpha(\beta m) = \beta(\alpha m)$)
|
|
|
|
Beachte: Für die zugehörigen Darstellungen bedeutet das: $\lambda_\alpha: M \rightarrow M: m \mapsto \alpha m, \rho_\beta: M \rightarrow M: m \mapsto m \beta$ \\
|
|
(Abbildung $\rho: B \rightarrow \End_\Lambda(M)$ ist Antihomomorphismus, d.h. $\rho_\beta \rho_\gamma = \rho_{\gamma \beta}$ für $\gamma, \beta \in B$) \\
|
|
Bedingung $\Leftrightarrow \lambda_\alpha \rho_\beta = \rho_\beta \lambda_\alpha \forall \alpha \in A, \beta \in B$ \\
|
|
d.h. $\lambda_\alpha$ und $\rho_\beta$ zentralisieren einander in $\End_\Lambda(M)$ ($\forall \lambda \in \Lambda, m \in m: \lambda m = m \lambda$)
|
|
|
|
5.1.3 Beispiel: $M \in A^{mod} = \set{\text{Links-$A$-Moduln}}$. Sei $E = \End_A(M)$. $E$ operiert auf $M$ von rechts. \\
|
|
$E = \set{b \in \End_\Lambda(M) \mid (am) b = a (mb) \forall a \in A, m \in M}$ \\
|
|
Dann ist $E$ $\Lambda$-Algebra und $M$ ein $A$-$E$-Bimodul. \\
|
|
Beweis: $A = \Lambda$-Algebra $\Rightarrow M$ ist $\Lambda$-Modul durch Einschränken, $\lambda m = (\lambda 1_A) m$.
|
|
Durch $\lambda m = m \lambda$ wird $M$ ein $\Lambda$-Rechtsmodul, da $\Lambda$ kommutativ ist. \\
|
|
Ein $A$-Endomorphismus ist dann auch ein $\Lambda$-Endomorphismus, d.h. $E = \End_A(M) \subseteq \End_\Lambda(M)$.
|
|
|
|
( Beachte: $\set{\text{$\Z$-Moduln}} = \set{\text{$\Z$-Bimoduln}} = \set{\text{abelsche Gruppen}}$ )
|
|
|
|
Für $b \in E$, $m \in M$ und $\lambda \in \Lambda$ sei $\lambda b \in \End_A(M)$ definiert durch $m (\lambda b) = \lambda (m b) = (m b) \lambda = m (b \lambda)$. So ist $E$ eine $\Lambda$-Algebra. Rest klar.
|
|
|
|
Bemerkung: $A$ und $B$ seien $\Lambda$-Algebren, $M$ ein $A$-Links- und $B$-Rechtsmodul. $\lambda: A \rightarrow \End_\Lambda(M): a \mapsto \lambda_a, \rho : B \rightarrow \End_\Lambda(M): b \mapsto \rho_b, \rho_b(m) = m b$ \\
|
|
$\rho $ Antihomomorphismus, $\lambda$ Homomorphismus von $\Lambda$-Algebra \\
|
|
$\tilde{B} = \im \rho \subseteq \End_\Lambda(M) \supseteq \tilde{A} = \im \lambda$
|
|
|
|
($R$ Ring, $R^{opp} = $ Ring auf Menge $R$ mit Multiplikation $\ast$ gegeben durch $r \ast s = sr \forall r,s \in R$)
|
|
|
|
Dann ist $M$ ein $A$-$B$-Bimodul $\Leftrightarrow$ $\tilde{B} \subseteq \End_A(M) \subseteq \End_\Lambda(M) \Leftrightarrow \tilde{A} \subseteq \End_B(M) \subseteq \End_\Lambda(M) $
|
|
|
|
Man sagt: $M$ erfüllt Schur-Wyl-Dualität oder ist balanced oder erfüllt Bizentralisatoren Eigenschaft, falls gilt: $\tilde{B} = \End_A(M), \tilde{A} = \End_B(M)$.
|
|
|
|
$ \rightsquigarrow $ Ausrechnen von $\End_A(M):$ $\Lambda = K $ Körper, $M \in \Lambda^{mod}, \dim_K M = n < \infty, \rho: A \rightarrow M_{n \times n}(K)$ zugehörige Matrixdarstellung. \\
|
|
$G_a: \rho(a)X = X \rho(a), X \in M_{n \times n}K$. Um $E$ auszurechnen genügt es die Gleichunssysteme $G_a$ für $a \in A$ simultan zu lösen. \\
|
|
Angenommen, $a_1, \ldots, a_k \in A$ so, dass $A$ die kleinste Unteralgebra von $A$ ist, die $a_1, \ldots, a_k$ enthält, d.h. $\set{a_1, \ldots, a_k}$ erzeugt die $K$-Algebra $A$,
|
|
dann genügt es $\rho(a_i)X = X \rho(a_i)$ simultan zu lösen $\rightsquigarrow$ mühsamer Weg um $E$ auszurechnen.
|
|
|
|
\subsection{Tensorprodukte}
|
|
|
|
$A, B, C$ seien $\Lambda$-Algebren, $\Lambda$ kommutativer Ring $\ni 1$. $\lsub{A}{\Mod_B} := \set{\text{$A$-$B$-Bimoduln}}$
|
|
|
|
Definition: Sei $M \in \lsub{A}{\Mod_B}, N \in \lsub{B}{\Mod_C}$. Eine Abbildung $f: M \times N \rightarrow U \in \lsub{A}{\Mod_C}$ heißt $A$-$C$-bilinear und $B$-balanced, falls gilt $\forall a \in A, b \in B, c \in C, m, m_1, m_2 \in M, n, n_1, n_2 \in N$: \\
|
|
\begin{enumerate}[i)]
|
|
\item $f$ ist bilinear, d.h. $f(m_1 + m_2, n) = f(m_1, n) + f(m_2, n), f(m, n_1 + n_2) = f(m, n_1) + f(m, n_2)$
|
|
\item $f(am, n) = a f(m, n)$
|
|
\item $f(m, nc) = f(m, n) c$
|
|
\item $f(mb, n) = f(m, bn) $
|
|
\end{enumerate}
|
|